| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright Contributors to the OpenVDB Project | ||
| 2 | // SPDX-License-Identifier: MPL-2.0 | ||
| 3 | |||
| 4 | #ifndef OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED | ||
| 5 | #define OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED | ||
| 6 | |||
| 7 | #include <tbb/parallel_reduce.h> | ||
| 8 | #include <tbb/blocked_range3d.h> | ||
| 9 | #include <tbb/blocked_range2d.h> | ||
| 10 | #include <tbb/blocked_range.h> | ||
| 11 | #include <openvdb/Types.h> | ||
| 12 | #include <openvdb/tree/LeafManager.h> | ||
| 13 | #include "Dense.h" | ||
| 14 | #include <algorithm> // for std::min() | ||
| 15 | #include <vector> | ||
| 16 | |||
| 17 | |||
| 18 | namespace openvdb { | ||
| 19 | OPENVDB_USE_VERSION_NAMESPACE | ||
| 20 | namespace OPENVDB_VERSION_NAME { | ||
| 21 | namespace tools { | ||
| 22 | |||
| 23 | /// @brief Selectively extract and transform data from a dense grid, producing a | ||
| 24 | /// sparse tree with leaf nodes only (e.g. create a tree from the square | ||
| 25 | /// of values greater than a cutoff.) | ||
| 26 | /// @param dense A dense grid that acts as a data source | ||
| 27 | /// @param functor A functor that selects and transforms data for output | ||
| 28 | /// @param background The background value of the resulting sparse grid | ||
| 29 | /// @param threaded Option to use threaded or serial code path | ||
| 30 | /// @return @c Ptr to tree with the valuetype and configuration defined | ||
| 31 | /// by typedefs in the @c functor. | ||
| 32 | /// @note To achieve optimal sparsity consider calling the prune() | ||
| 33 | /// method on the result. | ||
| 34 | /// @note To simply copy the all the data from a Dense grid to a | ||
| 35 | /// OpenVDB Grid, use tools::copyFromDense() for better performance. | ||
| 36 | /// | ||
| 37 | /// The type of the sparse tree is determined by the specified OtpType | ||
| 38 | /// functor by means of the typedef OptType::ResultTreeType | ||
| 39 | /// | ||
| 40 | /// The OptType function is responsible for the the transformation of | ||
| 41 | /// dense grid data to sparse grid data on a per-voxel basis. | ||
| 42 | /// | ||
| 43 | /// Only leaf nodes with active values will be added to the sparse grid. | ||
| 44 | /// | ||
| 45 | /// The OpType must struct that defines a the minimal form | ||
| 46 | /// @code | ||
| 47 | /// struct ExampleOp | ||
| 48 | /// { | ||
| 49 | /// using ResultTreeType = DesiredTreeType; | ||
| 50 | /// | ||
| 51 | /// template<typename IndexOrCoord> | ||
| 52 | /// void OpType::operator() (const DenseValueType a, const IndexOrCoord& ijk, | ||
| 53 | /// ResultTreeType::LeafNodeType* leaf); | ||
| 54 | /// }; | ||
| 55 | /// @endcode | ||
| 56 | /// | ||
| 57 | /// For example, to generate a <ValueType, 5, 4, 3> tree with valuesOn | ||
| 58 | /// at locations greater than a given maskvalue | ||
| 59 | /// @code | ||
| 60 | /// template<typename ValueType> | ||
| 61 | /// class Rule | ||
| 62 | /// { | ||
| 63 | /// public: | ||
| 64 | /// // Standard tree type (e.g. MaskTree or FloatTree in openvdb.h) | ||
| 65 | /// using ResultTreeType = typename openvdb::tree::Tree4<ValueType, 5, 4, 3>::Type; | ||
| 66 | /// | ||
| 67 | /// using ResultLeafNodeType = typename ResultTreeType::LeafNodeType; | ||
| 68 | /// using ResultValueType = typename ResultTreeType::ValueType; | ||
| 69 | /// | ||
| 70 | /// using DenseValueType = float; | ||
| 71 | /// | ||
| 72 | /// using Index = openvdb::Coord::ValueType; | ||
| 73 | /// | ||
| 74 | /// Rule(const DenseValueType& value): mMaskValue(value){}; | ||
| 75 | /// | ||
| 76 | /// template<typename IndexOrCoord> | ||
| 77 | /// void operator()(const DenseValueType& a, const IndexOrCoord& offset, | ||
| 78 | /// ResultLeafNodeType* leaf) const | ||
| 79 | /// { | ||
| 80 | /// if (a > mMaskValue) { | ||
| 81 | /// leaf->setValueOn(offset, a); | ||
| 82 | /// } | ||
| 83 | /// } | ||
| 84 | /// | ||
| 85 | /// private: | ||
| 86 | /// const DenseValueType mMaskValue; | ||
| 87 | /// }; | ||
| 88 | /// @endcode | ||
| 89 | template<typename OpType, typename DenseType> | ||
| 90 | typename OpType::ResultTreeType::Ptr | ||
| 91 | extractSparseTree(const DenseType& dense, const OpType& functor, | ||
| 92 | const typename OpType::ResultValueType& background, | ||
| 93 | bool threaded = true); | ||
| 94 | |||
| 95 | /// This struct that aids template resolution of a new tree type | ||
| 96 | /// has the same configuration at TreeType, but the ValueType from | ||
| 97 | /// DenseType. | ||
| 98 | template<typename DenseType, typename TreeType> | ||
| 99 | struct DSConverter | ||
| 100 | { | ||
| 101 | using ValueType = typename DenseType::ValueType; | ||
| 102 | using Type = typename TreeType::template ValueConverter<ValueType>::Type; | ||
| 103 | }; | ||
| 104 | |||
| 105 | |||
| 106 | /// @brief Copy data from the intersection of a sparse tree and a dense input grid. | ||
| 107 | /// The resulting tree has the same configuration as the sparse tree, but holds | ||
| 108 | /// the data type specified by the dense input. | ||
| 109 | /// @param dense A dense grid that acts as a data source | ||
| 110 | /// @param mask The active voxels and tiles intersected with dense define iteration mask | ||
| 111 | /// @param background The background value of the resulting sparse grid | ||
| 112 | /// @param threaded Option to use threaded or serial code path | ||
| 113 | /// @return @c Ptr to tree with the same configuration as @c mask but of value type | ||
| 114 | /// defined by @c dense. | ||
| 115 | template<typename DenseType, typename MaskTreeType> | ||
| 116 | typename DSConverter<DenseType, MaskTreeType>::Type::Ptr | ||
| 117 | extractSparseTreeWithMask(const DenseType& dense, | ||
| 118 | const MaskTreeType& mask, | ||
| 119 | const typename DenseType::ValueType& background, | ||
| 120 | bool threaded = true); | ||
| 121 | |||
| 122 | |||
| 123 | /// Apply a point-wise functor to the intersection of a dense grid and a given bounding box | ||
| 124 | /// @param dense A dense grid to be transformed | ||
| 125 | /// @param bbox Index space bounding box, define region where the transformation is applied | ||
| 126 | /// @param op A functor that acts on the dense grid value type | ||
| 127 | /// @param parallel Used to select multithreaded or single threaded | ||
| 128 | /// Minimally, the @c op class has to support a @c operator() method, | ||
| 129 | /// @code | ||
| 130 | /// // Square values in a grid | ||
| 131 | /// struct Op | ||
| 132 | /// { | ||
| 133 | /// ValueT operator()(const ValueT& in) const | ||
| 134 | /// { | ||
| 135 | /// // do work | ||
| 136 | /// ValueT result = in * in; | ||
| 137 | /// | ||
| 138 | /// return result; | ||
| 139 | /// } | ||
| 140 | /// }; | ||
| 141 | /// @endcode | ||
| 142 | /// NB: only Dense grids with memory layout zxy are supported | ||
| 143 | template<typename ValueT, typename OpType> | ||
| 144 | void transformDense(Dense<ValueT, openvdb::tools::LayoutZYX>& dense, | ||
| 145 | const openvdb::CoordBBox& bbox, const OpType& op, bool parallel=true); | ||
| 146 | |||
| 147 | /// We currrently support the following operations when compositing sparse | ||
| 148 | /// data into a dense grid. | ||
| 149 | enum DSCompositeOp { | ||
| 150 | DS_OVER, DS_ADD, DS_SUB, DS_MIN, DS_MAX, DS_MULT, DS_SET | ||
| 151 | }; | ||
| 152 | |||
| 153 | /// @brief Composite data from a sparse tree into a dense array of the same value type. | ||
| 154 | /// @param dense Dense grid to be altered by the operation | ||
| 155 | /// @param source Sparse data to composite into @c dense | ||
| 156 | /// @param alpha Sparse Alpha mask used in compositing operations. | ||
| 157 | /// @param beta Constant multiplier on src | ||
| 158 | /// @param strength Constant multiplier on alpha | ||
| 159 | /// @param threaded Enable threading for this operation. | ||
| 160 | template<DSCompositeOp, typename TreeT> | ||
| 161 | void compositeToDense(Dense<typename TreeT::ValueType, LayoutZYX>& dense, | ||
| 162 | const TreeT& source, | ||
| 163 | const TreeT& alpha, | ||
| 164 | const typename TreeT::ValueType beta, | ||
| 165 | const typename TreeT::ValueType strength, | ||
| 166 | bool threaded = true); | ||
| 167 | |||
| 168 | |||
| 169 | /// @brief Functor-based class used to extract data that satisfies some | ||
| 170 | /// criteria defined by the embedded @c OpType functor. The @c extractSparseTree | ||
| 171 | /// function wraps this class. | ||
| 172 | template<typename OpType, typename DenseType> | ||
| 173 | 17 | class SparseExtractor | |
| 174 | { | ||
| 175 | public: | ||
| 176 | using Index = openvdb::math::Coord::ValueType; | ||
| 177 | |||
| 178 | using DenseValueType = typename DenseType::ValueType; | ||
| 179 | using ResultTreeType = typename OpType::ResultTreeType; | ||
| 180 | using ResultValueType = typename ResultTreeType::ValueType; | ||
| 181 | using ResultLeafNodeType = typename ResultTreeType::LeafNodeType; | ||
| 182 | using MaskTree = typename ResultTreeType::template ValueConverter<ValueMask>::Type; | ||
| 183 | |||
| 184 | using Range3d = tbb::blocked_range3d<Index, Index, Index>; | ||
| 185 | |||
| 186 | private: | ||
| 187 | const DenseType& mDense; | ||
| 188 | const OpType& mFunctor; | ||
| 189 | const ResultValueType mBackground; | ||
| 190 | const openvdb::math::CoordBBox mBBox; | ||
| 191 | const Index mWidth; | ||
| 192 | typename ResultTreeType::Ptr mMask; | ||
| 193 | openvdb::math::Coord mMin; | ||
| 194 | |||
| 195 | public: | ||
| 196 | 6 | SparseExtractor(const DenseType& dense, const OpType& functor, | |
| 197 | const ResultValueType background) : | ||
| 198 | mDense(dense), mFunctor(functor), | ||
| 199 | mBackground(background), | ||
| 200 | mBBox(dense.bbox()), | ||
| 201 | mWidth(ResultLeafNodeType::DIM), | ||
| 202 | 6 | mMask( new ResultTreeType(mBackground)) | |
| 203 | 6 | {} | |
| 204 | |||
| 205 | ✗ | SparseExtractor(const DenseType& dense, | |
| 206 | const openvdb::math::CoordBBox& bbox, | ||
| 207 | const OpType& functor, | ||
| 208 | const ResultValueType background) : | ||
| 209 | mDense(dense), mFunctor(functor), | ||
| 210 | mBackground(background), | ||
| 211 | mBBox(bbox), | ||
| 212 | mWidth(ResultLeafNodeType::DIM), | ||
| 213 | ✗ | mMask( new ResultTreeType(mBackground)) | |
| 214 | { | ||
| 215 | // mBBox must be inside the coordinate rage of the dense grid | ||
| 216 | if (!dense.bbox().isInside(mBBox)) { | ||
| 217 | ✗ | OPENVDB_THROW(ValueError, "Data extraction window out of bound"); | |
| 218 | } | ||
| 219 | } | ||
| 220 | |||
| 221 | 34 | SparseExtractor(SparseExtractor& other, tbb::split): | |
| 222 | 34 | mDense(other.mDense), mFunctor(other.mFunctor), | |
| 223 | 34 | mBackground(other.mBackground), mBBox(other.mBBox), | |
| 224 | 34 | mWidth(other.mWidth), | |
| 225 | 34 | mMask(new ResultTreeType(mBackground)), | |
| 226 | 34 | mMin(other.mMin) | |
| 227 | 34 | {} | |
| 228 | |||
| 229 | 6 | typename ResultTreeType::Ptr extract(bool threaded = true) | |
| 230 | { | ||
| 231 | // Construct 3D range of leaf nodes that | ||
| 232 | // intersect mBBox. | ||
| 233 | |||
| 234 | // Snap the bbox to nearest leaf nodes min and max | ||
| 235 | |||
| 236 | 6 | openvdb::math::Coord padded_min = mBBox.min(); | |
| 237 | 6 | openvdb::math::Coord padded_max = mBBox.max(); | |
| 238 | |||
| 239 | |||
| 240 |
1/2✓ Branch 0 taken 3 times.
✗ Branch 1 not taken.
|
6 | padded_min &= ~(mWidth - 1); |
| 241 | padded_max &= ~(mWidth - 1); | ||
| 242 | |||
| 243 | 6 | padded_max[0] += mWidth - 1; | |
| 244 | 6 | padded_max[1] += mWidth - 1; | |
| 245 | 6 | padded_max[2] += mWidth - 1; | |
| 246 | |||
| 247 | |||
| 248 | // number of leaf nodes in each direction | ||
| 249 | // division by leaf width, e.g. 8 in most cases | ||
| 250 | |||
| 251 | 6 | const Index xleafCount = ( padded_max.x() - padded_min.x() + 1 ) / mWidth; | |
| 252 | 6 | const Index yleafCount = ( padded_max.y() - padded_min.y() + 1 ) / mWidth; | |
| 253 | 6 | const Index zleafCount = ( padded_max.z() - padded_min.z() + 1 ) / mWidth; | |
| 254 | |||
| 255 |
1/2✓ Branch 0 taken 3 times.
✗ Branch 1 not taken.
|
6 | mMin = padded_min; |
| 256 | |||
| 257 | Range3d leafRange(0, xleafCount, 1, | ||
| 258 | 0, yleafCount, 1, | ||
| 259 | 0, zleafCount, 1); | ||
| 260 | |||
| 261 | // Iterate over the leafnodes applying *this as a functor. | ||
| 262 |
1/2✓ Branch 0 taken 3 times.
✗ Branch 1 not taken.
|
6 | if (threaded) { |
| 263 | 6 | tbb::parallel_reduce(leafRange, *this); | |
| 264 | } else { | ||
| 265 | ✗ | (*this)(leafRange); | |
| 266 | } | ||
| 267 | |||
| 268 | 6 | return mMask; | |
| 269 | } | ||
| 270 | |||
| 271 | 1014 | void operator()(const Range3d& range) | |
| 272 | { | ||
| 273 | ResultLeafNodeType* leaf = nullptr; | ||
| 274 | |||
| 275 | // Unpack the range3d item. | ||
| 276 | const Index imin = range.pages().begin(); | ||
| 277 | const Index imax = range.pages().end(); | ||
| 278 | |||
| 279 | const Index jmin = range.rows().begin(); | ||
| 280 | const Index jmax = range.rows().end(); | ||
| 281 | |||
| 282 | const Index kmin = range.cols().begin(); | ||
| 283 | const Index kmax = range.cols().end(); | ||
| 284 | |||
| 285 | |||
| 286 | // loop over all the candidate leafs. Adding only those with 'true' values | ||
| 287 | // to the tree | ||
| 288 | |||
| 289 |
2/2✓ Branch 0 taken 1349 times.
✓ Branch 1 taken 507 times.
|
3712 | for (Index i = imin; i < imax; ++i) { |
| 290 |
2/2✓ Branch 0 taken 4562 times.
✓ Branch 1 taken 1349 times.
|
11822 | for (Index j = jmin; j < jmax; ++j) { |
| 291 |
2/2✓ Branch 0 taken 13500 times.
✓ Branch 1 taken 4562 times.
|
36124 | for (Index k = kmin; k < kmax; ++k) { |
| 292 | |||
| 293 | // Calculate the origin of candidate leaf | ||
| 294 | const openvdb::math::Coord origin = | ||
| 295 | 27000 | mMin + openvdb::math::Coord(mWidth * i, | |
| 296 | mWidth * j, | ||
| 297 |
2/2✓ Branch 0 taken 510 times.
✓ Branch 1 taken 12990 times.
|
27000 | mWidth * k ); |
| 298 | |||
| 299 |
2/2✓ Branch 0 taken 510 times.
✓ Branch 1 taken 12990 times.
|
27000 | if (leaf == nullptr) { |
| 300 |
1/2✓ Branch 2 taken 307 times.
✗ Branch 3 not taken.
|
1020 | leaf = new ResultLeafNodeType(origin, mBackground); |
| 301 | } else { | ||
| 302 | leaf->setOrigin(origin); | ||
| 303 | leaf->fill(mBackground); | ||
| 304 | leaf->setValuesOff(); | ||
| 305 | } | ||
| 306 | |||
| 307 | // The bounding box for this leaf | ||
| 308 | |||
| 309 | 27000 | openvdb::math::CoordBBox localBBox = leaf->getNodeBoundingBox(); | |
| 310 | |||
| 311 | // Shrink to the intersection with mBBox (i.e. the dense | ||
| 312 | // volume) | ||
| 313 | |||
| 314 | 27000 | localBBox.intersect(mBBox); | |
| 315 | |||
| 316 | // Early out for non-intersecting leafs | ||
| 317 | |||
| 318 | ✗ | if (localBBox.empty()) continue; | |
| 319 | |||
| 320 | |||
| 321 | 27000 | const openvdb::math::Coord start = localBBox.getStart(); | |
| 322 | const openvdb::math::Coord end = localBBox.getEnd(); | ||
| 323 | |||
| 324 | // Order the looping to respect the memory layout in | ||
| 325 | // the Dense source | ||
| 326 | |||
| 327 | if (mDense.memoryLayout() == openvdb::tools::LayoutZYX) { | ||
| 328 | |||
| 329 | openvdb::math::Coord ijk; | ||
| 330 | Index offset; | ||
| 331 | const DenseValueType* dp; | ||
| 332 |
2/2✓ Branch 0 taken 68760 times.
✓ Branch 1 taken 9000 times.
|
155520 | for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) { |
| 333 |
2/2✓ Branch 0 taken 550080 times.
✓ Branch 1 taken 68760 times.
|
1237680 | for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) { |
| 334 | 8159520 | for (ijk[2] = start.z(), | |
| 335 | 1100160 | offset = ResultLeafNodeType::coordToOffset(ijk), | |
| 336 | 1100160 | dp = &mDense.getValue(ijk); | |
| 337 |
2/2✓ Branch 0 taken 4079760 times.
✓ Branch 1 taken 550080 times.
|
9259680 | ijk[2] < end.z(); ++ijk[2], ++offset, ++dp) { |
| 338 | |||
| 339 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 2039879 times.
|
8159520 | mFunctor(*dp, offset, leaf); |
| 340 | } | ||
| 341 | } | ||
| 342 | } | ||
| 343 | |||
| 344 | } else { | ||
| 345 | |||
| 346 | openvdb::math::Coord ijk; | ||
| 347 | const DenseValueType* dp; | ||
| 348 |
2/2✓ Branch 0 taken 33375 times.
✓ Branch 1 taken 4500 times.
|
75750 | for (ijk[2] = start.z(); ijk[2] < end.z(); ++ijk[2]) { |
| 349 |
2/2✓ Branch 0 taken 267000 times.
✓ Branch 1 taken 33375 times.
|
600750 | for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1]) { |
| 350 | 4079760 | for (ijk[0] = start.x(), | |
| 351 | 534000 | dp = &mDense.getValue(ijk); | |
| 352 |
2/2✓ Branch 0 taken 2039880 times.
✓ Branch 1 taken 267000 times.
|
4613760 | ijk[0] < end.x(); ++ijk[0], ++dp) { |
| 353 | |||
| 354 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 2039879 times.
|
4079760 | mFunctor(*dp, ijk, leaf); |
| 355 | |||
| 356 | } | ||
| 357 | } | ||
| 358 | } | ||
| 359 | } | ||
| 360 | |||
| 361 | // Only add non-empty leafs (empty is defined as all inactive) | ||
| 362 | |||
| 363 |
2/2✓ Branch 0 taken 3 times.
✓ Branch 1 taken 13497 times.
|
27000 | if (!leaf->isEmpty()) { |
| 364 | 6 | mMask->addLeaf(leaf); | |
| 365 | leaf = nullptr; | ||
| 366 | } | ||
| 367 | |||
| 368 | } | ||
| 369 | } | ||
| 370 | } | ||
| 371 | |||
| 372 | // Clean up an unused leaf. | ||
| 373 | |||
| 374 |
1/2✓ Branch 0 taken 507 times.
✗ Branch 1 not taken.
|
1624 | if (leaf != nullptr) delete leaf; |
| 375 | } | ||
| 376 | |||
| 377 | void join(SparseExtractor& rhs) { | ||
| 378 | 17 | mMask->merge(*rhs.mMask); | |
| 379 | 17 | } | |
| 380 | }; // class SparseExtractor | ||
| 381 | |||
| 382 | |||
| 383 | template<typename OpType, typename DenseType> | ||
| 384 | typename OpType::ResultTreeType::Ptr | ||
| 385 | 6 | extractSparseTree(const DenseType& dense, const OpType& functor, | |
| 386 | const typename OpType::ResultValueType& background, | ||
| 387 | bool threaded) | ||
| 388 | { | ||
| 389 | // Construct the mask using a parallel reduce pattern. | ||
| 390 | // Each thread computes disjoint mask-trees. The join merges | ||
| 391 | // into a single tree. | ||
| 392 | |||
| 393 | 6 | SparseExtractor<OpType, DenseType> extractor(dense, functor, background); | |
| 394 | |||
| 395 |
1/2✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
|
12 | return extractor.extract(threaded); |
| 396 | } | ||
| 397 | |||
| 398 | |||
| 399 | /// @brief Functor-based class used to extract data from a dense grid, at | ||
| 400 | /// the index-space intersection with a supplied mask in the form of a sparse tree. | ||
| 401 | /// The @c extractSparseTreeWithMask function wraps this class. | ||
| 402 | template<typename DenseType, typename MaskTreeType> | ||
| 403 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | class SparseMaskedExtractor |
| 404 | { | ||
| 405 | public: | ||
| 406 | using _ResultTreeType = typename DSConverter<DenseType, MaskTreeType>::Type; | ||
| 407 | using ResultTreeType = _ResultTreeType; | ||
| 408 | using ResultLeafNodeType = typename ResultTreeType::LeafNodeType; | ||
| 409 | using ResultValueType = typename ResultTreeType::ValueType; | ||
| 410 | using DenseValueType = ResultValueType; | ||
| 411 | |||
| 412 | using MaskTree = typename ResultTreeType::template ValueConverter<ValueMask>::Type; | ||
| 413 | using MaskLeafCIter = typename MaskTree::LeafCIter; | ||
| 414 | using MaskLeafVec = std::vector<const typename MaskTree::LeafNodeType*>; | ||
| 415 | |||
| 416 | |||
| 417 | 1 | SparseMaskedExtractor(const DenseType& dense, | |
| 418 | const ResultValueType& background, | ||
| 419 | const MaskLeafVec& leafVec | ||
| 420 | ): | ||
| 421 | mDense(dense), mBackground(background), mBBox(dense.bbox()), | ||
| 422 | mLeafVec(leafVec), | ||
| 423 | 1 | mResult(new ResultTreeType(mBackground)) | |
| 424 | 1 | {} | |
| 425 | |||
| 426 | ✗ | SparseMaskedExtractor(const SparseMaskedExtractor& other, tbb::split): | |
| 427 | ✗ | mDense(other.mDense), mBackground(other.mBackground), mBBox(other.mBBox), | |
| 428 | ✗ | mLeafVec(other.mLeafVec), mResult( new ResultTreeType(mBackground)) | |
| 429 | ✗ | {} | |
| 430 | |||
| 431 | 1 | typename ResultTreeType::Ptr extract(bool threaded = true) | |
| 432 | { | ||
| 433 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | tbb::blocked_range<size_t> range(0, mLeafVec.size()); |
| 434 | |||
| 435 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (threaded) { |
| 436 | 1 | tbb::parallel_reduce(range, *this); | |
| 437 | } else { | ||
| 438 | ✗ | (*this)(range); | |
| 439 | } | ||
| 440 | |||
| 441 | 1 | return mResult; | |
| 442 | } | ||
| 443 | |||
| 444 | // Used in looping over leaf nodes in the masked grid | ||
| 445 | // and using the active mask to select data to | ||
| 446 | 2 | void operator()(const tbb::blocked_range<size_t>& range) | |
| 447 | { | ||
| 448 | ResultLeafNodeType* leaf = nullptr; | ||
| 449 | |||
| 450 | // loop over all the candidate leafs. Adding only those with 'true' values | ||
| 451 | // to the tree | ||
| 452 | |||
| 453 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 2 times.
|
4 | for (size_t idx = range.begin(); idx < range.end(); ++ idx) { |
| 454 | |||
| 455 | 2 | const typename MaskTree::LeafNodeType* maskLeaf = mLeafVec[idx]; | |
| 456 | |||
| 457 | // The bounding box for this leaf | ||
| 458 | |||
| 459 | 2 | openvdb::math::CoordBBox localBBox = maskLeaf->getNodeBoundingBox(); | |
| 460 | |||
| 461 | // Shrink to the intersection with the dense volume | ||
| 462 | |||
| 463 | 2 | localBBox.intersect(mBBox); | |
| 464 | |||
| 465 | // Early out if there was no intersection | ||
| 466 | |||
| 467 | 1 | if (localBBox.empty()) continue; | |
| 468 | |||
| 469 | // Reset or allocate the target leaf | ||
| 470 | |||
| 471 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (leaf == nullptr) { |
| 472 |
1/2✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
1 | leaf = new ResultLeafNodeType(maskLeaf->origin(), mBackground); |
| 473 | } else { | ||
| 474 | leaf->setOrigin(maskLeaf->origin()); | ||
| 475 | leaf->fill(mBackground); | ||
| 476 | leaf->setValuesOff(); | ||
| 477 | } | ||
| 478 | |||
| 479 | // Iterate over the intersecting bounding box | ||
| 480 | // copying active values to the result tree | ||
| 481 | |||
| 482 | 1 | const openvdb::math::Coord start = localBBox.getStart(); | |
| 483 | const openvdb::math::Coord end = localBBox.getEnd(); | ||
| 484 | |||
| 485 | openvdb::math::Coord ijk; | ||
| 486 | |||
| 487 | if (mDense.memoryLayout() == openvdb::tools::LayoutZYX | ||
| 488 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | && maskLeaf->isDense()) { |
| 489 | |||
| 490 | Index offset; | ||
| 491 | const DenseValueType* src; | ||
| 492 | ✗ | for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) { | |
| 493 | ✗ | for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) { | |
| 494 | ✗ | for (ijk[2] = start.z(), | |
| 495 | ✗ | offset = ResultLeafNodeType::coordToOffset(ijk), | |
| 496 | ✗ | src = &mDense.getValue(ijk); | |
| 497 | ✗ | ijk[2] < end.z(); ++ijk[2], ++offset, ++src) { | |
| 498 | |||
| 499 | // copy into leaf | ||
| 500 | leaf->setValueOn(offset, *src); | ||
| 501 | } | ||
| 502 | |||
| 503 | } | ||
| 504 | } | ||
| 505 | |||
| 506 | } else { | ||
| 507 | |||
| 508 | Index offset; | ||
| 509 |
2/2✓ Branch 0 taken 8 times.
✓ Branch 1 taken 1 times.
|
9 | for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) { |
| 510 |
2/2✓ Branch 0 taken 64 times.
✓ Branch 1 taken 8 times.
|
72 | for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) { |
| 511 | 320 | for (ijk[2] = start.z(), | |
| 512 | offset = ResultLeafNodeType::coordToOffset(ijk); | ||
| 513 |
2/2✓ Branch 0 taken 256 times.
✓ Branch 1 taken 64 times.
|
320 | ijk[2] < end.z(); ++ijk[2], ++offset) { |
| 514 | |||
| 515 |
2/2✓ Branch 1 taken 1 times.
✓ Branch 2 taken 255 times.
|
256 | if (maskLeaf->isValueOn(offset)) { |
| 516 | 1 | const ResultValueType denseValue = mDense.getValue(ijk); | |
| 517 | leaf->setValueOn(offset, denseValue); | ||
| 518 | } | ||
| 519 | } | ||
| 520 | } | ||
| 521 | } | ||
| 522 | } | ||
| 523 | // Only add non-empty leafs (empty is defined as all inactive) | ||
| 524 | |||
| 525 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (!leaf->isEmpty()) { |
| 526 | 1 | mResult->addLeaf(leaf); | |
| 527 | leaf = nullptr; | ||
| 528 | } | ||
| 529 | } | ||
| 530 | |||
| 531 | // Clean up an unused leaf. | ||
| 532 | |||
| 533 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
2 | if (leaf != nullptr) delete leaf; |
| 534 | 2 | } | |
| 535 | |||
| 536 | void join(SparseMaskedExtractor& rhs) { | ||
| 537 | ✗ | mResult->merge(*rhs.mResult); | |
| 538 | } | ||
| 539 | |||
| 540 | |||
| 541 | private: | ||
| 542 | const DenseType& mDense; | ||
| 543 | const ResultValueType mBackground; | ||
| 544 | const openvdb::math::CoordBBox& mBBox; | ||
| 545 | const MaskLeafVec& mLeafVec; | ||
| 546 | |||
| 547 | typename ResultTreeType::Ptr mResult; | ||
| 548 | |||
| 549 | }; // class SparseMaskedExtractor | ||
| 550 | |||
| 551 | |||
| 552 | /// @brief a simple utility class used by @c extractSparseTreeWithMask | ||
| 553 | template<typename _ResultTreeType, typename DenseValueType> | ||
| 554 | struct ExtractAll | ||
| 555 | { | ||
| 556 | using ResultTreeType = _ResultTreeType; | ||
| 557 | using ResultLeafNodeType = typename ResultTreeType::LeafNodeType; | ||
| 558 | |||
| 559 | template<typename CoordOrIndex> inline void | ||
| 560 | operator()(const DenseValueType& a, const CoordOrIndex& offset, ResultLeafNodeType* leaf) const | ||
| 561 | { | ||
| 562 | ✗ | leaf->setValueOn(offset, a); | |
| 563 | } | ||
| 564 | }; | ||
| 565 | |||
| 566 | |||
| 567 | template<typename DenseType, typename MaskTreeType> | ||
| 568 | typename DSConverter<DenseType, MaskTreeType>::Type::Ptr | ||
| 569 | 1 | extractSparseTreeWithMask(const DenseType& dense, | |
| 570 | const MaskTreeType& maskProxy, | ||
| 571 | const typename DenseType::ValueType& background, | ||
| 572 | bool threaded) | ||
| 573 | { | ||
| 574 | using LeafExtractor = SparseMaskedExtractor<DenseType, MaskTreeType>; | ||
| 575 | using DenseValueType = typename LeafExtractor::DenseValueType; | ||
| 576 | using ResultTreeType = typename LeafExtractor::ResultTreeType; | ||
| 577 | using MaskLeafVec = typename LeafExtractor::MaskLeafVec; | ||
| 578 | using MaskTree = typename LeafExtractor::MaskTree; | ||
| 579 | using MaskLeafCIter = typename LeafExtractor::MaskLeafCIter; | ||
| 580 | using ExtractionRule = ExtractAll<ResultTreeType, DenseValueType>; | ||
| 581 | |||
| 582 | // Use Mask tree to hold the topology | ||
| 583 | |||
| 584 |
1/2✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
2 | MaskTree maskTree(maskProxy, false, TopologyCopy()); |
| 585 | |||
| 586 | // Construct an array of pointers to the mask leafs. | ||
| 587 | |||
| 588 | 1 | const size_t leafCount = maskTree.leafCount(); | |
| 589 |
2/4✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
|
1 | MaskLeafVec leafarray(leafCount); |
| 590 | MaskLeafCIter leafiter = maskTree.cbeginLeaf(); | ||
| 591 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
|
3 | for (size_t n = 0; n != leafCount; ++n, ++leafiter) { |
| 592 |
1/2✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
|
2 | leafarray[n] = leafiter.getLeaf(); |
| 593 | } | ||
| 594 | |||
| 595 | |||
| 596 | // Extract the data that is masked leaf nodes in the mask. | ||
| 597 | |||
| 598 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | LeafExtractor leafextractor(dense, background, leafarray); |
| 599 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | typename ResultTreeType::Ptr resultTree = leafextractor.extract(threaded); |
| 600 | |||
| 601 | |||
| 602 | // Extract data that is masked by tiles in the mask. | ||
| 603 | |||
| 604 | |||
| 605 | // Loop over the mask tiles, extracting the data into new trees. | ||
| 606 | // These trees will be leaf-orthogonal to the leafTree (i.e. no leaf | ||
| 607 | // nodes will overlap). Merge these trees into the result. | ||
| 608 | |||
| 609 |
1/2✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
|
1 | typename MaskTreeType::ValueOnCIter tileIter(maskProxy); |
| 610 | 1 | tileIter.setMaxDepth(MaskTreeType::ValueOnCIter::LEAF_DEPTH - 1); | |
| 611 | |||
| 612 | // Return the leaf tree if the mask had no tiles | ||
| 613 | |||
| 614 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | if (!tileIter) return resultTree; |
| 615 | |||
| 616 | ExtractionRule allrule; | ||
| 617 | |||
| 618 | // Loop over the tiles in series, but the actual data extraction | ||
| 619 | // is in parallel. | ||
| 620 | |||
| 621 | ✗ | CoordBBox bbox; | |
| 622 | ✗ | for ( ; tileIter; ++tileIter) { | |
| 623 | |||
| 624 | // Find the intersection of the tile with the dense grid. | ||
| 625 | |||
| 626 | ✗ | tileIter.getBoundingBox(bbox); | |
| 627 | ✗ | bbox.intersect(dense.bbox()); | |
| 628 | |||
| 629 | ✗ | if (bbox.empty()) continue; | |
| 630 | |||
| 631 | ✗ | SparseExtractor<ExtractionRule, DenseType> copyData(dense, bbox, allrule, background); | |
| 632 | ✗ | typename ResultTreeType::Ptr fromTileTree = copyData.extract(threaded); | |
| 633 | ✗ | resultTree->merge(*fromTileTree); | |
| 634 | } | ||
| 635 | |||
| 636 | return resultTree; | ||
| 637 | } | ||
| 638 | |||
| 639 | |||
| 640 | /// @brief Class that applies a functor to the index space intersection | ||
| 641 | /// of a prescribed bounding box and the dense grid. | ||
| 642 | /// NB: This class only supports DenseGrids with ZYX memory layout. | ||
| 643 | template<typename _ValueT, typename OpType> | ||
| 644 | class DenseTransformer | ||
| 645 | { | ||
| 646 | public: | ||
| 647 | using ValueT = _ValueT; | ||
| 648 | using DenseT = Dense<ValueT, openvdb::tools::LayoutZYX>; | ||
| 649 | using IntType = openvdb::math::Coord::ValueType; | ||
| 650 | using RangeType = tbb::blocked_range2d<IntType, IntType>; | ||
| 651 | |||
| 652 | private: | ||
| 653 | DenseT& mDense; | ||
| 654 | const OpType& mOp; | ||
| 655 | openvdb::math::CoordBBox mBBox; | ||
| 656 | |||
| 657 | public: | ||
| 658 | 1 | DenseTransformer(DenseT& dense, const openvdb::math::CoordBBox& bbox, const OpType& functor): | |
| 659 | 1 | mDense(dense), mOp(functor), mBBox(dense.bbox()) | |
| 660 | { | ||
| 661 | // The iteration space is the intersection of the | ||
| 662 | // input bbox and the index-space covered by the dense grid | ||
| 663 | 1 | mBBox.intersect(bbox); | |
| 664 | } | ||
| 665 | |||
| 666 | 20 | DenseTransformer(const DenseTransformer& other) : | |
| 667 | 2 | mDense(other.mDense), mOp(other.mOp), mBBox(other.mBBox) {} | |
| 668 | |||
| 669 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
2 | void apply(bool threaded = true) { |
| 670 | |||
| 671 | // Early out if the iteration space is empty | ||
| 672 | |||
| 673 | ✗ | if (mBBox.empty()) return; | |
| 674 | |||
| 675 | |||
| 676 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
2 | const openvdb::math::Coord start = mBBox.getStart(); |
| 677 | const openvdb::math::Coord end = mBBox.getEnd(); | ||
| 678 | |||
| 679 | // The iteration range only the slower two directions. | ||
| 680 | const RangeType range(start.x(), end.x(), 1, | ||
| 681 | start.y(), end.y(), 1); | ||
| 682 | |||
| 683 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
2 | if (threaded) { |
| 684 | 2 | tbb::parallel_for(range, *this); | |
| 685 | } else { | ||
| 686 | ✗ | (*this)(range); | |
| 687 | } | ||
| 688 | } | ||
| 689 | |||
| 690 | 70 | void operator()(const RangeType& range) const { | |
| 691 | |||
| 692 | // The stride in the z-direction. | ||
| 693 | // Note: the bbox is [inclusive, inclusive] | ||
| 694 | |||
| 695 | 70 | const size_t zlength = size_t(mBBox.max().z() - mBBox.min().z() + 1); | |
| 696 | |||
| 697 | const IntType imin = range.rows().begin(); | ||
| 698 | const IntType imax = range.rows().end(); | ||
| 699 | const IntType jmin = range.cols().begin(); | ||
| 700 | const IntType jmax = range.cols().end(); | ||
| 701 | |||
| 702 | |||
| 703 | openvdb::math::Coord xyz(imin, jmin, mBBox.min().z()); | ||
| 704 |
2/2✓ Branch 0 taken 35 times.
✓ Branch 1 taken 35 times.
|
140 | for (xyz[0] = imin; xyz[0] != imax; ++xyz[0]) { |
| 705 |
2/2✓ Branch 0 taken 35 times.
✓ Branch 1 taken 35 times.
|
140 | for (xyz[1] = jmin; xyz[1] != jmax; ++xyz[1]) { |
| 706 | |||
| 707 | 70 | mOp.transform(mDense, xyz, zlength); | |
| 708 | } | ||
| 709 | } | ||
| 710 | } | ||
| 711 | }; // class DenseTransformer | ||
| 712 | |||
| 713 | |||
| 714 | /// @brief a wrapper struct used to avoid unnecessary computation of | ||
| 715 | /// memory access from @c Coord when all offsets are guaranteed to be | ||
| 716 | /// within the dense grid. | ||
| 717 | template<typename ValueT, typename PointWiseOp> | ||
| 718 | struct ContiguousOp | ||
| 719 | { | ||
| 720 | 1 | ContiguousOp(const PointWiseOp& op) : mOp(op){} | |
| 721 | |||
| 722 | using DenseT = Dense<ValueT, openvdb::tools::LayoutZYX>; | ||
| 723 | 70 | inline void transform(DenseT& dense, openvdb::math::Coord& ijk, size_t size) const | |
| 724 | { | ||
| 725 | ValueT* dp = const_cast<ValueT*>(&dense.getValue(ijk)); | ||
| 726 | |||
| 727 |
2/2✓ Branch 0 taken 105 times.
✓ Branch 1 taken 35 times.
|
280 | for (size_t offset = 0; offset < size; ++offset) { |
| 728 | 210 | dp[offset] = mOp(dp[offset]); | |
| 729 | } | ||
| 730 | } | ||
| 731 | |||
| 732 | const PointWiseOp mOp; | ||
| 733 | }; | ||
| 734 | |||
| 735 | |||
| 736 | /// Apply a point-wise functor to the intersection of a dense grid and a given bounding box | ||
| 737 | template<typename ValueT, typename PointwiseOpT> | ||
| 738 | void | ||
| 739 | 2 | transformDense(Dense<ValueT, openvdb::tools::LayoutZYX>& dense, | |
| 740 | const openvdb::CoordBBox& bbox, | ||
| 741 | const PointwiseOpT& functor, bool parallel) | ||
| 742 | { | ||
| 743 | using OpT = ContiguousOp<ValueT, PointwiseOpT>; | ||
| 744 | |||
| 745 | // Convert the Op so it operates on a contiguous line in memory | ||
| 746 | |||
| 747 | OpT op(functor); | ||
| 748 | |||
| 749 | // Apply to the index space intersection in the dense grid | ||
| 750 | DenseTransformer<ValueT, OpT> transformer(dense, bbox, op); | ||
| 751 | 2 | transformer.apply(parallel); | |
| 752 | } | ||
| 753 | |||
| 754 | |||
| 755 | template<typename CompositeMethod, typename _TreeT> | ||
| 756 | class SparseToDenseCompositor | ||
| 757 | { | ||
| 758 | public: | ||
| 759 | using TreeT = _TreeT; | ||
| 760 | using ValueT = typename TreeT::ValueType; | ||
| 761 | using LeafT = typename TreeT::LeafNodeType; | ||
| 762 | using MaskTreeT = typename TreeT::template ValueConverter<ValueMask>::Type; | ||
| 763 | using MaskLeafT = typename MaskTreeT::LeafNodeType; | ||
| 764 | using DenseT = Dense<ValueT, openvdb::tools::LayoutZYX>; | ||
| 765 | using Index = openvdb::math::Coord::ValueType; | ||
| 766 | using Range3d = tbb::blocked_range3d<Index, Index, Index>; | ||
| 767 | |||
| 768 | 3 | SparseToDenseCompositor(DenseT& dense, const TreeT& source, const TreeT& alpha, | |
| 769 | const ValueT beta, const ValueT strength) : | ||
| 770 |
3/6✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 1 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 1 times.
✗ Branch 7 not taken.
|
3 | mDense(dense), mSource(source), mAlpha(alpha), mBeta(beta), mStrength(strength) |
| 771 | {} | ||
| 772 | |||
| 773 | 8 | SparseToDenseCompositor(const SparseToDenseCompositor& other): | |
| 774 | 8 | mDense(other.mDense), mSource(other.mSource), mAlpha(other.mAlpha), | |
| 775 |
1/2✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
|
5 | mBeta(other.mBeta), mStrength(other.mStrength) {} |
| 776 | |||
| 777 | |||
| 778 | 2 | void sparseComposite(bool threaded) | |
| 779 | { | ||
| 780 | 2 | const ValueT beta = mBeta; | |
| 781 | 2 | const ValueT strength = mStrength; | |
| 782 | |||
| 783 | // construct a tree that defines the iteration space | ||
| 784 | |||
| 785 | 2 | MaskTreeT maskTree(mSource, false /*background*/, openvdb::TopologyCopy()); | |
| 786 |
1/2✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
|
2 | maskTree.topologyUnion(mAlpha); |
| 787 | |||
| 788 | // Composite regions that are represented by leafnodes in either mAlpha or mSource | ||
| 789 | // Parallelize over bool-leafs | ||
| 790 | |||
| 791 |
1/2✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
|
2 | openvdb::tree::LeafManager<const MaskTreeT> maskLeafs(maskTree); |
| 792 |
1/2✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
|
2 | maskLeafs.foreach(*this, threaded); |
| 793 | |||
| 794 | // Composite regions that are represented by tiles | ||
| 795 | // Parallelize within each tile. | ||
| 796 | |||
| 797 | typename MaskTreeT::ValueOnCIter citer = maskTree.cbeginValueOn(); | ||
| 798 | 2 | citer.setMaxDepth(MaskTreeT::ValueOnCIter::LEAF_DEPTH - 1); | |
| 799 | |||
| 800 |
1/2✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
|
2 | if (!citer) return; |
| 801 | |||
| 802 | ✗ | typename tree::ValueAccessor<const TreeT> alphaAccessor(mAlpha); | |
| 803 | ✗ | typename tree::ValueAccessor<const TreeT> sourceAccessor(mSource); | |
| 804 | |||
| 805 | ✗ | for (; citer; ++citer) { | |
| 806 | |||
| 807 | ✗ | const openvdb::math::Coord org = citer.getCoord(); | |
| 808 | |||
| 809 | // Early out if both alpha and source are zero in this tile. | ||
| 810 | |||
| 811 | ✗ | const ValueT alphaValue = alphaAccessor.getValue(org); | |
| 812 | ✗ | const ValueT sourceValue = sourceAccessor.getValue(org); | |
| 813 | |||
| 814 | ✗ | if (openvdb::math::isZero(alphaValue) && | |
| 815 | ✗ | openvdb::math::isZero(sourceValue)) continue; | |
| 816 | |||
| 817 | // Compute overlap of tile with the dense grid | ||
| 818 | |||
| 819 | openvdb::math::CoordBBox localBBox = citer.getBoundingBox(); | ||
| 820 | ✗ | localBBox.intersect(mDense.bbox()); | |
| 821 | |||
| 822 | // Early out if there is no intersection | ||
| 823 | |||
| 824 | ✗ | if (localBBox.empty()) continue; | |
| 825 | |||
| 826 | // Composite the tile-uniform values into the dense grid. | ||
| 827 | ✗ | compositeFromTile(mDense, localBBox, sourceValue, | |
| 828 | alphaValue, beta, strength, threaded); | ||
| 829 | } | ||
| 830 | } | ||
| 831 | |||
| 832 | // Composites leaf values where the alpha values are active. | ||
| 833 | // Used in sparseComposite | ||
| 834 | 2 | void inline operator()(const MaskLeafT& maskLeaf, size_t /*i*/) const | |
| 835 | { | ||
| 836 | using ULeaf = UniformLeaf; | ||
| 837 | 2 | openvdb::math::CoordBBox localBBox = maskLeaf.getNodeBoundingBox(); | |
| 838 | 2 | localBBox.intersect(mDense.bbox()); | |
| 839 | |||
| 840 | // Early out for non-overlapping leafs | ||
| 841 | |||
| 842 | ✗ | if (localBBox.empty()) return; | |
| 843 | |||
| 844 | 2 | const openvdb::math::Coord org = maskLeaf.origin(); | |
| 845 | 2 | const LeafT* alphaLeaf = mAlpha.probeLeaf(org); | |
| 846 | 2 | const LeafT* sourceLeaf = mSource.probeLeaf(org); | |
| 847 | |||
| 848 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
2 | if (!sourceLeaf) { |
| 849 | |||
| 850 | // Create a source leaf proxy with the correct value | ||
| 851 | ✗ | ULeaf uniformSource(mSource.getValue(org)); | |
| 852 | |||
| 853 | ✗ | if (!alphaLeaf) { | |
| 854 | |||
| 855 | // Create an alpha leaf proxy with the correct value | ||
| 856 | ✗ | ULeaf uniformAlpha(mAlpha.getValue(org)); | |
| 857 | |||
| 858 | ✗ | compositeFromLeaf(mDense, localBBox, uniformSource, uniformAlpha, | |
| 859 | ✗ | mBeta, mStrength); | |
| 860 | } else { | ||
| 861 | |||
| 862 | ✗ | compositeFromLeaf(mDense, localBBox, uniformSource, *alphaLeaf, | |
| 863 | ✗ | mBeta, mStrength); | |
| 864 | } | ||
| 865 | } else { | ||
| 866 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
2 | if (!alphaLeaf) { |
| 867 | |||
| 868 | // Create an alpha leaf proxy with the correct value | ||
| 869 | ✗ | ULeaf uniformAlpha(mAlpha.getValue(org)); | |
| 870 | |||
| 871 | ✗ | compositeFromLeaf(mDense, localBBox, *sourceLeaf, uniformAlpha, | |
| 872 | ✗ | mBeta, mStrength); | |
| 873 | } else { | ||
| 874 | |||
| 875 | 2 | compositeFromLeaf(mDense, localBBox, *sourceLeaf, *alphaLeaf, | |
| 876 | 2 | mBeta, mStrength); | |
| 877 | } | ||
| 878 | } | ||
| 879 | } | ||
| 880 | // i.e. it assumes that all valueOff Alpha voxels have value 0. | ||
| 881 | |||
| 882 | template<typename LeafT1, typename LeafT2> | ||
| 883 | 4 | inline static void compositeFromLeaf(DenseT& dense, const openvdb::math::CoordBBox& bbox, | |
| 884 | const LeafT1& source, const LeafT2& alpha, | ||
| 885 | const ValueT beta, const ValueT strength) | ||
| 886 | { | ||
| 887 | using IntType = openvdb::math::Coord::ValueType; | ||
| 888 | |||
| 889 | const ValueT sbeta = strength * beta; | ||
| 890 | 4 | openvdb::math::Coord ijk = bbox.min(); | |
| 891 | |||
| 892 | |||
| 893 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
4 | if (alpha.isDense() /*all active values*/) { |
| 894 | |||
| 895 | // Optimal path for dense alphaLeaf | ||
| 896 | ✗ | const IntType size = bbox.max().z() + 1 - bbox.min().z(); | |
| 897 | |||
| 898 | ✗ | for (ijk[0] = bbox.min().x(); ijk[0] < bbox.max().x() + 1; ++ijk[0]) { | |
| 899 | ✗ | for (ijk[1] = bbox.min().y(); ijk[1] < bbox.max().y() + 1; ++ijk[1]) { | |
| 900 | |||
| 901 | ValueT* d = const_cast<ValueT*>(&dense.getValue(ijk)); | ||
| 902 | ✗ | const ValueT* a = &alpha.getValue(ijk); | |
| 903 | ✗ | const ValueT* s = &source.getValue(ijk); | |
| 904 | |||
| 905 | ✗ | for (IntType idx = 0; idx < size; ++idx) { | |
| 906 | ✗ | d[idx] = CompositeMethod::apply(d[idx], a[idx], s[idx], | |
| 907 | strength, beta, sbeta); | ||
| 908 | } | ||
| 909 | } | ||
| 910 | } | ||
| 911 | } else { | ||
| 912 | |||
| 913 | // AlphaLeaf has non-active cells. | ||
| 914 | |||
| 915 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 2 times.
|
12 | for (ijk[0] = bbox.min().x(); ijk[0] < bbox.max().x() + 1; ++ijk[0]) { |
| 916 |
2/2✓ Branch 0 taken 24 times.
✓ Branch 1 taken 4 times.
|
56 | for (ijk[1] = bbox.min().y(); ijk[1] < bbox.max().y() + 1; ++ijk[1]) { |
| 917 |
2/2✓ Branch 0 taken 72 times.
✓ Branch 1 taken 24 times.
|
192 | for (ijk[2] = bbox.min().z(); ijk[2] < bbox.max().z() + 1; ++ijk[2]) { |
| 918 | |||
| 919 |
2/2✓ Branch 1 taken 2 times.
✓ Branch 2 taken 70 times.
|
144 | if (alpha.isValueOn(ijk)) { |
| 920 | 4 | dense.setValue(ijk, CompositeMethod::apply(dense.getValue(ijk), | |
| 921 | alpha.getValue(ijk), source.getValue(ijk), strength, beta, sbeta)); | ||
| 922 | } | ||
| 923 | } | ||
| 924 | } | ||
| 925 | } | ||
| 926 | } | ||
| 927 | } | ||
| 928 | |||
| 929 | inline static void compositeFromTile(DenseT& dense, openvdb::math::CoordBBox& bbox, | ||
| 930 | const ValueT& sourceValue, const ValueT& alphaValue, | ||
| 931 | const ValueT& beta, const ValueT& strength, | ||
| 932 | bool threaded) | ||
| 933 | { | ||
| 934 | using TileTransformer = UniformTransformer; | ||
| 935 | TileTransformer functor(sourceValue, alphaValue, beta, strength); | ||
| 936 | |||
| 937 | // Transform the data inside the bbox according to the TileTranformer. | ||
| 938 | |||
| 939 | ✗ | transformDense(dense, bbox, functor, threaded); | |
| 940 | } | ||
| 941 | |||
| 942 | 1 | void denseComposite(bool threaded) | |
| 943 | { | ||
| 944 | /// Construct a range that corresponds to the | ||
| 945 | /// bounding box of the dense volume | ||
| 946 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | const openvdb::math::CoordBBox& bbox = mDense.bbox(); |
| 947 | |||
| 948 | Range3d range(bbox.min().x(), bbox.max().x(), LeafT::DIM, | ||
| 949 | bbox.min().y(), bbox.max().y(), LeafT::DIM, | ||
| 950 | bbox.min().z(), bbox.max().z(), LeafT::DIM); | ||
| 951 | |||
| 952 | // Iterate over the range, compositing into | ||
| 953 | // the dense grid using value accessors for | ||
| 954 | // sparse the grids. | ||
| 955 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (threaded) { |
| 956 | 1 | tbb::parallel_for(range, *this); | |
| 957 | } else { | ||
| 958 | ✗ | (*this)(range); | |
| 959 | } | ||
| 960 | 1 | } | |
| 961 | |||
| 962 | // Composites a dense region using value accessors | ||
| 963 | // into a dense grid | ||
| 964 | 4 | void operator()(const Range3d& range) const | |
| 965 | { | ||
| 966 | // Use value accessors to alpha and source | ||
| 967 | |||
| 968 | 4 | typename tree::ValueAccessor<const TreeT> alphaAccessor(mAlpha); | |
| 969 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | typename tree::ValueAccessor<const TreeT> sourceAccessor(mSource); |
| 970 | |||
| 971 | 4 | const ValueT strength = mStrength; | |
| 972 | 4 | const ValueT beta = mBeta; | |
| 973 | const ValueT sbeta = strength * beta; | ||
| 974 | |||
| 975 | // Unpack the range3d item. | ||
| 976 | const Index imin = range.pages().begin(); | ||
| 977 | const Index imax = range.pages().end(); | ||
| 978 | |||
| 979 | const Index jmin = range.rows().begin(); | ||
| 980 | const Index jmax = range.rows().end(); | ||
| 981 | |||
| 982 | const Index kmin = range.cols().begin(); | ||
| 983 | const Index kmax = range.cols().end(); | ||
| 984 | |||
| 985 | openvdb::Coord ijk; | ||
| 986 |
2/2✓ Branch 0 taken 20 times.
✓ Branch 1 taken 4 times.
|
24 | for (ijk[0] = imin; ijk[0] < imax; ++ijk[0]) { |
| 987 |
2/2✓ Branch 0 taken 100 times.
✓ Branch 1 taken 20 times.
|
120 | for (ijk[1] = jmin; ijk[1] < jmax; ++ijk[1]) { |
| 988 |
2/2✓ Branch 0 taken 500 times.
✓ Branch 1 taken 100 times.
|
600 | for (ijk[2] = kmin; ijk[2] < kmax; ++ijk[2]) { |
| 989 | 500 | const ValueT d_old = mDense.getValue(ijk); | |
| 990 |
1/2✓ Branch 1 taken 500 times.
✗ Branch 2 not taken.
|
500 | const ValueT& alpha = alphaAccessor.getValue(ijk); |
| 991 |
1/2✓ Branch 1 taken 500 times.
✗ Branch 2 not taken.
|
500 | const ValueT& src = sourceAccessor.getValue(ijk); |
| 992 | |||
| 993 | 500 | mDense.setValue(ijk, | |
| 994 | 500 | CompositeMethod::apply(d_old, alpha, src, strength, beta, sbeta)); | |
| 995 | } | ||
| 996 | } | ||
| 997 | } | ||
| 998 | 4 | } | |
| 999 | |||
| 1000 | private: | ||
| 1001 | // Internal class that wraps the templated composite method | ||
| 1002 | // for use when both alpha and source are uniform over | ||
| 1003 | // a prescribed bbox (e.g. a tile). | ||
| 1004 | class UniformTransformer | ||
| 1005 | { | ||
| 1006 | public: | ||
| 1007 | ✗ | UniformTransformer(const ValueT& source, const ValueT& alpha, const ValueT& _beta, | |
| 1008 | const ValueT& _strength) : | ||
| 1009 | mSource(source), mAlpha(alpha), mBeta(_beta), | ||
| 1010 | ✗ | mStrength(_strength), mSBeta(_strength * _beta) | |
| 1011 | {} | ||
| 1012 | |||
| 1013 | ValueT operator()(const ValueT& input) const | ||
| 1014 | { | ||
| 1015 | ✗ | return CompositeMethod::apply(input, mAlpha, mSource, mStrength, mBeta, mSBeta); | |
| 1016 | } | ||
| 1017 | |||
| 1018 | private: | ||
| 1019 | const ValueT mSource; | ||
| 1020 | const ValueT mAlpha; | ||
| 1021 | const ValueT mBeta; | ||
| 1022 | const ValueT mStrength; | ||
| 1023 | const ValueT mSBeta; | ||
| 1024 | }; | ||
| 1025 | |||
| 1026 | |||
| 1027 | // Simple Class structure that mimics a leaf | ||
| 1028 | // with uniform values. Holds LeafT::DIM copies | ||
| 1029 | // of a value in an array. | ||
| 1030 | struct Line { ValueT mValues[LeafT::DIM]; }; | ||
| 1031 | class UniformLeaf : private Line | ||
| 1032 | { | ||
| 1033 | public: | ||
| 1034 | using ValueT = typename LeafT::ValueType; | ||
| 1035 | |||
| 1036 | using BaseT = Line; | ||
| 1037 | ✗ | UniformLeaf(const ValueT& value) : BaseT(init(value)) {} | |
| 1038 | |||
| 1039 | static const BaseT init(const ValueT& value) { | ||
| 1040 | BaseT tmp; | ||
| 1041 | ✗ | for (openvdb::Index i = 0; i < LeafT::DIM; ++i) { | |
| 1042 | ✗ | tmp.mValues[i] = value; | |
| 1043 | } | ||
| 1044 | return tmp; | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | bool isDense() const { return true; } | ||
| 1048 | bool isValueOn(openvdb::math::Coord&) const { return true; } | ||
| 1049 | |||
| 1050 | ✗ | const ValueT& getValue(const openvdb::math::Coord&) const { return BaseT::mValues[0]; } | |
| 1051 | }; | ||
| 1052 | |||
| 1053 | private: | ||
| 1054 | DenseT& mDense; | ||
| 1055 | const TreeT& mSource; | ||
| 1056 | const TreeT& mAlpha; | ||
| 1057 | ValueT mBeta; | ||
| 1058 | ValueT mStrength; | ||
| 1059 | }; // class SparseToDenseCompositor | ||
| 1060 | |||
| 1061 | |||
| 1062 | namespace ds | ||
| 1063 | { | ||
| 1064 | //@{ | ||
| 1065 | /// @brief Point wise methods used to apply various compositing operations. | ||
| 1066 | template<typename ValueT> | ||
| 1067 | struct OpOver | ||
| 1068 | { | ||
| 1069 | static inline ValueT apply(const ValueT u, const ValueT alpha, | ||
| 1070 | const ValueT v, | ||
| 1071 | const ValueT strength, | ||
| 1072 | const ValueT beta, | ||
| 1073 | const ValueT /*sbeta*/) | ||
| 1074 |
1/2✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
503 | { return (u + strength * alpha * (beta * v - u)); } |
| 1075 | }; | ||
| 1076 | |||
| 1077 | template<typename ValueT> | ||
| 1078 | struct OpAdd | ||
| 1079 | { | ||
| 1080 | static inline ValueT apply(const ValueT u, const ValueT alpha, | ||
| 1081 | const ValueT v, | ||
| 1082 | const ValueT /*strength*/, | ||
| 1083 | const ValueT /*beta*/, | ||
| 1084 | const ValueT sbeta) | ||
| 1085 | { return (u + sbeta * alpha * v); } | ||
| 1086 | }; | ||
| 1087 | |||
| 1088 | template<typename ValueT> | ||
| 1089 | struct OpSub | ||
| 1090 | { | ||
| 1091 | static inline ValueT apply(const ValueT u, const ValueT alpha, | ||
| 1092 | const ValueT v, | ||
| 1093 | const ValueT /*strength*/, | ||
| 1094 | const ValueT /*beta*/, | ||
| 1095 | const ValueT sbeta) | ||
| 1096 | { return (u - sbeta * alpha * v); } | ||
| 1097 | }; | ||
| 1098 | |||
| 1099 | template<typename ValueT> | ||
| 1100 | struct OpMin | ||
| 1101 | { | ||
| 1102 | static inline ValueT apply(const ValueT u, const ValueT alpha, | ||
| 1103 | const ValueT v, | ||
| 1104 | const ValueT s /*trength*/, | ||
| 1105 | const ValueT beta, | ||
| 1106 | const ValueT /*sbeta*/) | ||
| 1107 | { return ( ( 1 - s * alpha) * u + s * alpha * std::min(u, beta * v) ); } | ||
| 1108 | }; | ||
| 1109 | |||
| 1110 | template<typename ValueT> | ||
| 1111 | struct OpMax | ||
| 1112 | { | ||
| 1113 | static inline ValueT apply(const ValueT u, const ValueT alpha, | ||
| 1114 | const ValueT v, | ||
| 1115 | const ValueT s/*trength*/, | ||
| 1116 | const ValueT beta, | ||
| 1117 | const ValueT /*sbeta*/) | ||
| 1118 | { return ( ( 1 - s * alpha ) * u + s * alpha * std::min(u, beta * v) ); } | ||
| 1119 | }; | ||
| 1120 | |||
| 1121 | template<typename ValueT> | ||
| 1122 | struct OpMult | ||
| 1123 | { | ||
| 1124 | static inline ValueT apply(const ValueT u, const ValueT alpha, | ||
| 1125 | const ValueT v, | ||
| 1126 | const ValueT s/*trength*/, | ||
| 1127 | const ValueT /*beta*/, | ||
| 1128 | const ValueT sbeta) | ||
| 1129 | { return ( ( 1 + alpha * (sbeta * v - s)) * u ); } | ||
| 1130 | }; | ||
| 1131 | //@} | ||
| 1132 | |||
| 1133 | //@{ | ||
| 1134 | /// Translator that converts an enum to compositing functor types | ||
| 1135 | template<DSCompositeOp OP, typename ValueT> | ||
| 1136 | struct CompositeFunctorTranslator{}; | ||
| 1137 | |||
| 1138 | template<typename ValueT> | ||
| 1139 | struct CompositeFunctorTranslator<DS_OVER, ValueT>{ using OpT = OpOver<ValueT>; }; | ||
| 1140 | |||
| 1141 | template<typename ValueT> | ||
| 1142 | struct CompositeFunctorTranslator<DS_ADD, ValueT>{ using OpT = OpAdd<ValueT>; }; | ||
| 1143 | |||
| 1144 | template<typename ValueT> | ||
| 1145 | struct CompositeFunctorTranslator<DS_SUB, ValueT>{ using OpT = OpSub<ValueT>; }; | ||
| 1146 | |||
| 1147 | template<typename ValueT> | ||
| 1148 | struct CompositeFunctorTranslator<DS_MIN, ValueT>{ using OpT = OpMin<ValueT>; }; | ||
| 1149 | |||
| 1150 | template<typename ValueT> | ||
| 1151 | struct CompositeFunctorTranslator<DS_MAX, ValueT>{ using OpT = OpMax<ValueT>; }; | ||
| 1152 | |||
| 1153 | template<typename ValueT> | ||
| 1154 | struct CompositeFunctorTranslator<DS_MULT, ValueT>{ using OpT = OpMult<ValueT>; }; | ||
| 1155 | //@} | ||
| 1156 | |||
| 1157 | } // namespace ds | ||
| 1158 | |||
| 1159 | |||
| 1160 | template<DSCompositeOp OpT, typename TreeT> | ||
| 1161 | inline void | ||
| 1162 | 1 | compositeToDense( | |
| 1163 | Dense<typename TreeT::ValueType, LayoutZYX>& dense, | ||
| 1164 | const TreeT& source, const TreeT& alpha, | ||
| 1165 | const typename TreeT::ValueType beta, | ||
| 1166 | const typename TreeT::ValueType strength, | ||
| 1167 | bool threaded) | ||
| 1168 | { | ||
| 1169 | using ValueT = typename TreeT::ValueType; | ||
| 1170 | using Translator = ds::CompositeFunctorTranslator<OpT, ValueT>; | ||
| 1171 | using Method = typename Translator::OpT; | ||
| 1172 | |||
| 1173 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | if (openvdb::math::isZero(strength)) return; |
| 1174 | |||
| 1175 | SparseToDenseCompositor<Method, TreeT> tool(dense, source, alpha, beta, strength); | ||
| 1176 | |||
| 1177 |
2/4✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
1 | if (openvdb::math::isZero(alpha.background()) && |
| 1178 | openvdb::math::isZero(source.background())) | ||
| 1179 | { | ||
| 1180 | // Use the sparsity of (alpha U source) as the iteration space. | ||
| 1181 | 1 | tool.sparseComposite(threaded); | |
| 1182 | } else { | ||
| 1183 | // Use the bounding box of dense as the iteration space. | ||
| 1184 | ✗ | tool.denseComposite(threaded); | |
| 1185 | } | ||
| 1186 | } | ||
| 1187 | |||
| 1188 | } // namespace tools | ||
| 1189 | } // namespace OPENVDB_VERSION_NAME | ||
| 1190 | } // namespace openvdb | ||
| 1191 | |||
| 1192 | #endif //OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED | ||
| 1193 |