| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright Contributors to the OpenVDB Project | ||
| 2 | // SPDX-License-Identifier: MPL-2.0 | ||
| 3 | // | ||
| 4 | /// @file MapsUtil.h | ||
| 5 | |||
| 6 | #ifndef OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED | ||
| 7 | #define OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED | ||
| 8 | |||
| 9 | #include <openvdb/math/Maps.h> | ||
| 10 | #include <algorithm> // for std::min(), std::max() | ||
| 11 | #include <cmath> | ||
| 12 | #include <vector> | ||
| 13 | |||
| 14 | |||
| 15 | namespace openvdb { | ||
| 16 | OPENVDB_USE_VERSION_NAMESPACE | ||
| 17 | namespace OPENVDB_VERSION_NAME { | ||
| 18 | namespace util { | ||
| 19 | |||
| 20 | // Utility methods for calculating bounding boxes | ||
| 21 | |||
| 22 | /// @brief Calculate an axis-aligned bounding box in the given map's domain | ||
| 23 | /// (e.g., index space) from an axis-aligned bounding box in its range | ||
| 24 | /// (e.g., world space) | ||
| 25 | template<typename MapType> | ||
| 26 | inline void | ||
| 27 | 4 | calculateBounds(const MapType& map, const BBoxd& in, BBoxd& out) | |
| 28 | { | ||
| 29 | const Vec3d& min = in.min(); | ||
| 30 | const Vec3d& max = in.max(); | ||
| 31 | |||
| 32 | // the pre-image of the 8 corners of the box | ||
| 33 |
2/2✓ Branch 0 taken 16 times.
✓ Branch 1 taken 2 times.
|
36 | Vec3d corners[8]; |
| 34 | 4 | corners[0] = in.min();; | |
| 35 | 4 | corners[1] = Vec3d(min(0), min(1), min(2)); | |
| 36 | 4 | corners[2] = Vec3d(max(0), max(1), min(2)); | |
| 37 | 4 | corners[3] = Vec3d(min(0), max(1), min(2)); | |
| 38 | 4 | corners[4] = Vec3d(min(0), min(1), max(2)); | |
| 39 | 4 | corners[5] = Vec3d(max(0), min(1), max(2)); | |
| 40 | 4 | corners[6] = max; | |
| 41 | 4 | corners[7] = Vec3d(min(0), max(1), max(2)); | |
| 42 | |||
| 43 | Vec3d pre_image; | ||
| 44 | Vec3d& out_min = out.min(); | ||
| 45 | Vec3d& out_max = out.max(); | ||
| 46 | 4 | out_min = map.applyInverseMap(corners[0]); | |
| 47 | 4 | out_max = min; | |
| 48 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
32 | for (int i = 1; i < 8; ++i) { |
| 49 | 28 | pre_image = map.applyInverseMap(corners[i]); | |
| 50 |
2/2✓ Branch 0 taken 42 times.
✓ Branch 1 taken 14 times.
|
112 | for (int j = 0; j < 3; ++j) { |
| 51 |
2/2✓ Branch 0 taken 3 times.
✓ Branch 1 taken 39 times.
|
84 | out_min(j) = std::min( out_min(j), pre_image(j)); |
| 52 | 84 | out_max(j) = std::max( out_max(j), pre_image(j)); | |
| 53 | } | ||
| 54 | } | ||
| 55 | } | ||
| 56 | |||
| 57 | |||
| 58 | /// @brief Calculate an axis-aligned bounding box in the given map's domain | ||
| 59 | /// from a spherical bounding box in its range. | ||
| 60 | template<typename MapType> | ||
| 61 | inline void | ||
| 62 | 4 | calculateBounds(const MapType& map, const Vec3d& center, const Real radius, BBoxd& out) | |
| 63 | { | ||
| 64 | // On return, out gives a bounding box in continuous index space | ||
| 65 | // that encloses the sphere. | ||
| 66 | // | ||
| 67 | // the image of a sphere under the inverse of the linearMap will be an ellipsoid. | ||
| 68 | |||
| 69 | if (math::is_linear<MapType>::value) { | ||
| 70 | // I want to find extrema for three functions f(x', y', z') = x', or = y', or = z' | ||
| 71 | // with the constraint that g = (x-xo)^2 + (y-yo)^2 + (z-zo)^2 = r^2. | ||
| 72 | // Where the point x,y,z is the image of x',y',z' | ||
| 73 | // Solve: \lambda Grad(g) = Grad(f) and g = r^2. | ||
| 74 | // Note: here (x,y,z) is the image of (x',y',z'), and the gradient | ||
| 75 | // is w.r.t the (') space. | ||
| 76 | // | ||
| 77 | // This can be solved exactly: e_a^T (x' -xo') =\pm r\sqrt(e_a^T J^(-1)J^(-T)e_a) | ||
| 78 | // where e_a is one of the three unit vectors. - djh. | ||
| 79 | |||
| 80 | /// find the image of the center of the sphere | ||
| 81 | Vec3d center_pre_image = map.applyInverseMap(center); | ||
| 82 | |||
| 83 | std::vector<Vec3d> coordinate_units; | ||
| 84 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | coordinate_units.push_back(Vec3d(1,0,0)); |
| 85 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | coordinate_units.push_back(Vec3d(0,1,0)); |
| 86 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
4 | coordinate_units.push_back(Vec3d(0,0,1)); |
| 87 | |||
| 88 | Vec3d& out_min = out.min(); | ||
| 89 | Vec3d& out_max = out.max(); | ||
| 90 |
2/2✓ Branch 0 taken 12 times.
✓ Branch 1 taken 4 times.
|
16 | for (int direction = 0; direction < 3; ++direction) { |
| 91 | 12 | Vec3d temp = map.applyIJT(coordinate_units[direction]); | |
| 92 | 12 | double offset = | |
| 93 | 12 | radius * sqrt(temp.x()*temp.x() + temp.y()*temp.y() + temp.z()*temp.z()); | |
| 94 | 12 | out_min(direction) = center_pre_image(direction) - offset; | |
| 95 | 12 | out_max(direction) = center_pre_image(direction) + offset; | |
| 96 | } | ||
| 97 | |||
| 98 | } else { | ||
| 99 | // This is some unknown map type. In this case, we form an axis-aligned | ||
| 100 | // bounding box for the sphere in world space and find the pre-images of | ||
| 101 | // the corners in index space. From these corners we compute an axis-aligned | ||
| 102 | // bounding box in index space. | ||
| 103 | BBoxd bounding_box(center - radius*Vec3d(1,1,1), center + radius*Vec3d(1,1,1)); | ||
| 104 | calculateBounds<MapType>(map, bounding_box, out); | ||
| 105 | } | ||
| 106 | 4 | } | |
| 107 | |||
| 108 | |||
| 109 | namespace { // anonymous namespace for this helper function | ||
| 110 | |||
| 111 | /// @brief Find the intersection of a line passing through the point | ||
| 112 | /// (<I>x</I>=0, <I>z</I>=−1/<I>g</I>) with the circle | ||
| 113 | /// (<I>x</I> − <I>xo</I>)² + (<I>z</I> − <I>zo</I>)² = <I>r</I>² | ||
| 114 | /// at a point tangent to the circle. | ||
| 115 | /// @return 0 if the focal point (0, -1/<I>g</I>) is inside the circle, | ||
| 116 | /// 1 if the focal point touches the circle, or 2 when both points are found. | ||
| 117 | inline int | ||
| 118 | 2 | findTangentPoints(const double g, const double xo, const double zo, | |
| 119 | const double r, double& xp, double& zp, double& xm, double& zm) | ||
| 120 | { | ||
| 121 | 2 | double x2 = xo * xo; | |
| 122 | 2 | double r2 = r * r; | |
| 123 | 2 | double xd = g * xo; | |
| 124 | 2 | double xd2 = xd*xd; | |
| 125 | 2 | double zd = g * zo + 1.; | |
| 126 | 2 | double zd2 = zd*zd; | |
| 127 | 2 | double rd2 = r2*g*g; | |
| 128 | |||
| 129 | 2 | double distA = xd2 + zd2; | |
| 130 | 2 | double distB = distA - rd2; | |
| 131 | |||
| 132 |
1/2✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
|
2 | if (distB > 0) { |
| 133 | 2 | double discriminate = sqrt(distB); | |
| 134 | |||
| 135 | 2 | xp = xo - xo*rd2/distA + r * zd *discriminate / distA; | |
| 136 | 2 | xm = xo - xo*rd2/distA - r * zd *discriminate / distA; | |
| 137 | |||
| 138 | 2 | zp = (zo*zd2 + zd*g*(x2 - r2) - xo*xo*g - r*xd*discriminate) / distA; | |
| 139 | 2 | zm = (zo*zd2 + zd*g*(x2 - r2) - xo*xo*g + r*xd*discriminate) / distA; | |
| 140 | |||
| 141 | 2 | return 2; | |
| 142 | |||
| 143 | ✗ | } if (0 >= distB && distB >= -1e-9) { | |
| 144 | // the circle touches the focal point (x=0, z = -1/g) | ||
| 145 | ✗ | xp = 0; xm = 0; | |
| 146 | ✗ | zp = -1/g; zm = -1/g; | |
| 147 | |||
| 148 | ✗ | return 1; | |
| 149 | } | ||
| 150 | |||
| 151 | return 0; | ||
| 152 | } | ||
| 153 | |||
| 154 | } // end anonymous namespace | ||
| 155 | |||
| 156 | |||
| 157 | /// @brief Calculate an axis-aligned bounding box in index space | ||
| 158 | /// from a spherical bounding box in world space. | ||
| 159 | /// @note This specialization is optimized for a frustum map | ||
| 160 | template<> | ||
| 161 | inline void | ||
| 162 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | calculateBounds<math::NonlinearFrustumMap>(const math::NonlinearFrustumMap& frustum, |
| 163 | const Vec3d& center, const Real radius, BBoxd& out) | ||
| 164 | { | ||
| 165 | // The frustum is a nonlinear map followed by a uniform scale, rotation, translation. | ||
| 166 | // First we invert the translation, rotation and scale to find the spherical pre-image | ||
| 167 | // of the sphere in "local" coordinates where the frustum is aligned with the near plane | ||
| 168 | // on the z=0 plane and the "camera" is located at (x=0, y=0, z=-1/g). | ||
| 169 | |||
| 170 | // check that the internal map has no shear. | ||
| 171 | const math::AffineMap& secondMap = frustum.secondMap(); | ||
| 172 | // test if the linear part has shear or non-uniform scaling | ||
| 173 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | if (!frustum.hasSimpleAffine()) { |
| 174 | |||
| 175 | // In this case, we form an axis-aligned bounding box for sphere in world space | ||
| 176 | // and find the pre_images of the corners in voxel space. From these corners we | ||
| 177 | // compute an axis-algined bounding box in voxel-spae | ||
| 178 | ✗ | BBoxd bounding_box(center - radius*Vec3d(1,1,1), center + radius*Vec3d(1,1,1)); | |
| 179 | ✗ | calculateBounds<math::NonlinearFrustumMap>(frustum, bounding_box, out); | |
| 180 | return; | ||
| 181 | } | ||
| 182 | |||
| 183 | // for convenience | ||
| 184 | Vec3d& out_min = out.min(); | ||
| 185 | Vec3d& out_max = out.max(); | ||
| 186 | |||
| 187 | Vec3d centerLS = secondMap.applyInverseMap(center); | ||
| 188 | Vec3d voxelSize = secondMap.voxelSize(); | ||
| 189 | |||
| 190 | // all the voxels have the same size since we know this is a simple affine map | ||
| 191 | 1 | double radiusLS = radius / voxelSize(0); | |
| 192 | |||
| 193 | double gamma = frustum.getGamma(); | ||
| 194 | double xp; | ||
| 195 | double zp; | ||
| 196 | double xm; | ||
| 197 | double zm; | ||
| 198 | int soln_number; | ||
| 199 | |||
| 200 | // the bounding box in index space for the points in the frustum | ||
| 201 | const BBoxd& bbox = frustum.getBBox(); | ||
| 202 | // initialize min and max | ||
| 203 | 1 | const double x_min = bbox.min().x(); | |
| 204 | 1 | const double y_min = bbox.min().y(); | |
| 205 | 1 | const double z_min = bbox.min().z(); | |
| 206 | |||
| 207 | 1 | const double x_max = bbox.max().x(); | |
| 208 | 1 | const double y_max = bbox.max().y(); | |
| 209 | 1 | const double z_max = bbox.max().z(); | |
| 210 | |||
| 211 | 1 | out_min.x() = x_min; | |
| 212 | 1 | out_max.x() = x_max; | |
| 213 | 1 | out_min.y() = y_min; | |
| 214 | 1 | out_max.y() = y_max; | |
| 215 | |||
| 216 | Vec3d extreme; | ||
| 217 | Vec3d extreme2; | ||
| 218 | Vec3d pre_image; | ||
| 219 | // find the x-range | ||
| 220 | 1 | soln_number = findTangentPoints(gamma, centerLS.x(), centerLS.z(), radiusLS, xp, zp, xm, zm); | |
| 221 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (soln_number == 2) { |
| 222 | 1 | extreme.x() = xp; | |
| 223 | 1 | extreme.y() = centerLS.y(); | |
| 224 | 1 | extreme.z() = zp; | |
| 225 | |||
| 226 | // location in world space of the tangent point | ||
| 227 | 1 | extreme2 = secondMap.applyMap(extreme); | |
| 228 | // convert back to voxel space | ||
| 229 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
| 230 | 1 | out_max.x() = std::max(x_min, std::min(x_max, pre_image.x())); | |
| 231 | |||
| 232 | 1 | extreme.x() = xm; | |
| 233 | 1 | extreme.y() = centerLS.y(); | |
| 234 | 1 | extreme.z() = zm; | |
| 235 | // location in world space of the tangent point | ||
| 236 | 1 | extreme2 = secondMap.applyMap(extreme); | |
| 237 | |||
| 238 | // convert back to voxel space | ||
| 239 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
| 240 | 1 | out_min.x() = std::max(x_min, std::min(x_max, pre_image.x())); | |
| 241 | |||
| 242 | } else if (soln_number == 1) { | ||
| 243 | // the circle was tangent at the focal point | ||
| 244 | } else if (soln_number == 0) { | ||
| 245 | // the focal point was inside the circle | ||
| 246 | } | ||
| 247 | |||
| 248 | // find the y-range | ||
| 249 | 1 | soln_number = findTangentPoints(gamma, centerLS.y(), centerLS.z(), radiusLS, xp, zp, xm, zm); | |
| 250 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (soln_number == 2) { |
| 251 | 1 | extreme.x() = centerLS.x(); | |
| 252 | 1 | extreme.y() = xp; | |
| 253 | 1 | extreme.z() = zp; | |
| 254 | |||
| 255 | // location in world space of the tangent point | ||
| 256 | 1 | extreme2 = secondMap.applyMap(extreme); | |
| 257 | // convert back to voxel space | ||
| 258 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
| 259 | 1 | out_max.y() = std::max(y_min, std::min(y_max, pre_image.y())); | |
| 260 | |||
| 261 | 1 | extreme.x() = centerLS.x(); | |
| 262 | 1 | extreme.y() = xm; | |
| 263 | 1 | extreme.z() = zm; | |
| 264 | 1 | extreme2 = secondMap.applyMap(extreme); | |
| 265 | |||
| 266 | // convert back to voxel space | ||
| 267 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
| 268 | 1 | out_min.y() = std::max(y_min, std::min(y_max, pre_image.y())); | |
| 269 | |||
| 270 | } else if (soln_number == 1) { | ||
| 271 | // the circle was tangent at the focal point | ||
| 272 | } else if (soln_number == 0) { | ||
| 273 | // the focal point was inside the circle | ||
| 274 | } | ||
| 275 | |||
| 276 | // the near and far | ||
| 277 | // the closest point. The front of the frustum is at 0 in index space | ||
| 278 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
1 | double near_dist = std::max(centerLS.z() - radiusLS, 0.); |
| 279 | // the farthest point. The back of the frustum is at mDepth in index space | ||
| 280 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
2 | double far_dist = std::min(centerLS.z() + radiusLS, frustum.getDepth() ); |
| 281 | |||
| 282 | Vec3d near_point(0.f, 0.f, near_dist); | ||
| 283 | Vec3d far_point(0.f, 0.f, far_dist); | ||
| 284 | |||
| 285 | 2 | out_min.z() = std::max(z_min, frustum.applyInverseMap(secondMap.applyMap(near_point)).z()); | |
| 286 | 2 | out_max.z() = std::min(z_max, frustum.applyInverseMap(secondMap.applyMap(far_point)).z()); | |
| 287 | |||
| 288 | } | ||
| 289 | |||
| 290 | } // namespace util | ||
| 291 | } // namespace OPENVDB_VERSION_NAME | ||
| 292 | } // namespace openvdb | ||
| 293 | |||
| 294 | #endif // OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED | ||
| 295 |