| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // Copyright Contributors to the OpenVDB Project | ||
| 2 | // SPDX-License-Identifier: MPL-2.0 | ||
| 3 | // | ||
| 4 | /// @file Mat.h | ||
| 5 | /// @author Joshua Schpok | ||
| 6 | |||
| 7 | #ifndef OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED | ||
| 8 | #define OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED | ||
| 9 | |||
| 10 | #include "Math.h" | ||
| 11 | #include <openvdb/Exceptions.h> | ||
| 12 | #include <algorithm> // for std::max() | ||
| 13 | #include <cmath> | ||
| 14 | #include <iostream> | ||
| 15 | #include <string> | ||
| 16 | |||
| 17 | |||
| 18 | namespace openvdb { | ||
| 19 | OPENVDB_USE_VERSION_NAMESPACE | ||
| 20 | namespace OPENVDB_VERSION_NAME { | ||
| 21 | namespace math { | ||
| 22 | |||
| 23 | /// @class Mat "Mat.h" | ||
| 24 | /// A base class for square matrices. | ||
| 25 | template<unsigned SIZE, typename T> | ||
| 26 | class Mat | ||
| 27 | { | ||
| 28 | public: | ||
| 29 | using value_type = T; | ||
| 30 | using ValueType = T; | ||
| 31 | enum SIZE_ { size = SIZE }; | ||
| 32 | |||
| 33 | #if OPENVDB_ABI_VERSION_NUMBER >= 8 | ||
| 34 | /// Trivial constructor, the matrix is NOT initialized | ||
| 35 | /// @note destructor, copy constructor, assignment operator and | ||
| 36 | /// move constructor are left to be defined by the compiler (default) | ||
| 37 | Mat() = default; | ||
| 38 | #else | ||
| 39 | /// Default ctor. Does nothing. Required because declaring a copy (or | ||
| 40 | /// other) constructor means the default constructor gets left out. | ||
| 41 | Mat() { } | ||
| 42 | |||
| 43 | /// Copy constructor. Used when the class signature matches exactly. | ||
| 44 | Mat(Mat const &src) { | ||
| 45 | for (unsigned i(0); i < numElements(); ++i) { | ||
| 46 | mm[i] = src.mm[i]; | ||
| 47 | } | ||
| 48 | } | ||
| 49 | |||
| 50 | Mat& operator=(Mat const& src) { | ||
| 51 | if (&src != this) { | ||
| 52 | for (unsigned i = 0; i < numElements(); ++i) { | ||
| 53 | mm[i] = src.mm[i]; | ||
| 54 | } | ||
| 55 | } | ||
| 56 | return *this; | ||
| 57 | } | ||
| 58 | #endif | ||
| 59 | |||
| 60 | // Number of cols, rows, elements | ||
| 61 | static unsigned numRows() { return SIZE; } | ||
| 62 | static unsigned numColumns() { return SIZE; } | ||
| 63 | static unsigned numElements() { return SIZE*SIZE; } | ||
| 64 | |||
| 65 | /// @return string representation of matrix | ||
| 66 | /// Since output is multiline, optional indentation argument prefixes | ||
| 67 | /// each newline with that much white space. It does not indent | ||
| 68 | /// the first line, since you might be calling this inline: | ||
| 69 | /// | ||
| 70 | /// cout << "matrix: " << mat.str(7) | ||
| 71 | /// | ||
| 72 | /// matrix: [[1 2] | ||
| 73 | /// [3 4]] | ||
| 74 | std::string | ||
| 75 | ✗ | str(unsigned indentation = 0) const { | |
| 76 | |||
| 77 | std::string ret; | ||
| 78 | std::string indent; | ||
| 79 | |||
| 80 | // We add +1 since we're indenting one for the first '[' | ||
| 81 | ✗ | indent.append(indentation+1, ' '); | |
| 82 | |||
| 83 | ✗ | ret.append("["); | |
| 84 | |||
| 85 | // For each row, | ||
| 86 | ✗ | for (unsigned i(0); i < SIZE; i++) { | |
| 87 | |||
| 88 | ✗ | ret.append("["); | |
| 89 | |||
| 90 | // For each column | ||
| 91 | ✗ | for (unsigned j(0); j < SIZE; j++) { | |
| 92 | |||
| 93 | // Put a comma after everything except the last | ||
| 94 | ✗ | if (j) ret.append(", "); | |
| 95 | ✗ | ret.append(std::to_string(mm[(i*SIZE)+j])); | |
| 96 | } | ||
| 97 | |||
| 98 | ✗ | ret.append("]"); | |
| 99 | |||
| 100 | // At the end of every row (except the last)... | ||
| 101 | ✗ | if (i < SIZE - 1) { | |
| 102 | // ...suffix the row bracket with a comma, newline, and advance indentation. | ||
| 103 | ✗ | ret.append(",\n"); | |
| 104 | ✗ | ret.append(indent); | |
| 105 | } | ||
| 106 | } | ||
| 107 | |||
| 108 | ✗ | ret.append("]"); | |
| 109 | |||
| 110 | ✗ | return ret; | |
| 111 | } | ||
| 112 | |||
| 113 | /// Write a Mat to an output stream | ||
| 114 | ✗ | friend std::ostream& operator<<( | |
| 115 | std::ostream& ostr, | ||
| 116 | const Mat<SIZE, T>& m) | ||
| 117 | { | ||
| 118 | ✗ | ostr << m.str(); | |
| 119 | ✗ | return ostr; | |
| 120 | } | ||
| 121 | |||
| 122 | /// Direct access to the internal data | ||
| 123 | 3700 | T* asPointer() { return mm; } | |
| 124 | 96705591 | const T* asPointer() const { return mm; } | |
| 125 | |||
| 126 | //@{ | ||
| 127 | /// Array style reference to ith row | ||
| 128 |
0/8✗ Branch 0 not taken.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
|
5975358 | T* operator[](int i) { return &(mm[i*SIZE]); } |
| 129 |
2/3✓ Branch 0 taken 2 times.
✓ Branch 1 taken 25 times.
✗ Branch 2 not taken.
|
267 | const T* operator[](int i) const { return &(mm[i*SIZE]); } |
| 130 | //@} | ||
| 131 | |||
| 132 | void write(std::ostream& os) const { | ||
| 133 |
12/24✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 1 times.
✗ Branch 11 not taken.
✓ Branch 13 taken 1 times.
✗ Branch 14 not taken.
✓ Branch 16 taken 1 times.
✗ Branch 17 not taken.
✓ Branch 19 taken 1 times.
✗ Branch 20 not taken.
✓ Branch 22 taken 1 times.
✗ Branch 23 not taken.
✓ Branch 25 taken 1 times.
✗ Branch 26 not taken.
✓ Branch 28 taken 1 times.
✗ Branch 29 not taken.
✓ Branch 31 taken 1 times.
✗ Branch 32 not taken.
✓ Branch 34 taken 1 times.
✗ Branch 35 not taken.
|
13 | os.write(reinterpret_cast<const char*>(&mm), sizeof(T)*SIZE*SIZE); |
| 134 | 12 | } | |
| 135 | |||
| 136 | void read(std::istream& is) { | ||
| 137 |
4/8✓ Branch 1 taken 3 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 3 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 3 times.
✗ Branch 8 not taken.
✓ Branch 10 taken 3 times.
✗ Branch 11 not taken.
|
13 | is.read(reinterpret_cast<char*>(&mm), sizeof(T)*SIZE*SIZE); |
| 138 | 12 | } | |
| 139 | |||
| 140 | /// Return the maximum of the absolute of all elements in this matrix | ||
| 141 | T absMax() const { | ||
| 142 | T x = static_cast<T>(std::fabs(mm[0])); | ||
| 143 | for (unsigned i = 1; i < numElements(); ++i) { | ||
| 144 | x = std::max(x, static_cast<T>(std::fabs(mm[i]))); | ||
| 145 | } | ||
| 146 | return x; | ||
| 147 | } | ||
| 148 | |||
| 149 | /// True if a Nan is present in this matrix | ||
| 150 | bool isNan() const { | ||
| 151 | for (unsigned i = 0; i < numElements(); ++i) { | ||
| 152 | if (math::isNan(mm[i])) return true; | ||
| 153 | } | ||
| 154 | return false; | ||
| 155 | } | ||
| 156 | |||
| 157 | /// True if an Inf is present in this matrix | ||
| 158 | bool isInfinite() const { | ||
| 159 | for (unsigned i = 0; i < numElements(); ++i) { | ||
| 160 | if (math::isInfinite(mm[i])) return true; | ||
| 161 | } | ||
| 162 | return false; | ||
| 163 | } | ||
| 164 | |||
| 165 | /// True if no Nan or Inf values are present | ||
| 166 | bool isFinite() const { | ||
| 167 | for (unsigned i = 0; i < numElements(); ++i) { | ||
| 168 | if (!math::isFinite(mm[i])) return false; | ||
| 169 | } | ||
| 170 | return true; | ||
| 171 | } | ||
| 172 | |||
| 173 | /// True if all elements are exactly zero | ||
| 174 | bool isZero() const { | ||
| 175 | for (unsigned i = 0; i < numElements(); ++i) { | ||
| 176 | if (!math::isZero(mm[i])) return false; | ||
| 177 | } | ||
| 178 | return true; | ||
| 179 | } | ||
| 180 | |||
| 181 | protected: | ||
| 182 | T mm[SIZE*SIZE]; | ||
| 183 | }; | ||
| 184 | |||
| 185 | |||
| 186 | template<typename T> class Quat; | ||
| 187 | template<typename T> class Vec3; | ||
| 188 | |||
| 189 | /// @brief Return the rotation matrix specified by the given quaternion. | ||
| 190 | /// @details The quaternion is normalized and used to construct the matrix. | ||
| 191 | /// Note that the matrix is transposed to match post-multiplication semantics. | ||
| 192 | template<class MatType> | ||
| 193 | MatType | ||
| 194 |
1/2✓ Branch 0 taken 4 times.
✗ Branch 1 not taken.
|
8 | rotation(const Quat<typename MatType::value_type> &q, |
| 195 | typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8)) | ||
| 196 | { | ||
| 197 | using T = typename MatType::value_type; | ||
| 198 | |||
| 199 | T qdot(q.dot(q)); | ||
| 200 | T s(0); | ||
| 201 | |||
| 202 |
1/2✓ Branch 0 taken 4 times.
✗ Branch 1 not taken.
|
8 | if (!isApproxEqual(qdot, T(0.0),eps)) { |
| 203 | 8 | s = T(2.0 / qdot); | |
| 204 | } | ||
| 205 | |||
| 206 | 8 | T x = s*q.x(); | |
| 207 | 8 | T y = s*q.y(); | |
| 208 | 8 | T z = s*q.z(); | |
| 209 | 8 | T wx = x*q.w(); | |
| 210 | 8 | T wy = y*q.w(); | |
| 211 | 8 | T wz = z*q.w(); | |
| 212 | 8 | T xx = x*q.x(); | |
| 213 | 8 | T xy = y*q.x(); | |
| 214 | 8 | T xz = z*q.x(); | |
| 215 | 8 | T yy = y*q.y(); | |
| 216 | 8 | T yz = z*q.y(); | |
| 217 | 8 | T zz = z*q.z(); | |
| 218 | |||
| 219 | MatType r; | ||
| 220 | 8 | r[0][0]=T(1) - (yy+zz); r[0][1]=xy + wz; r[0][2]=xz - wy; | |
| 221 | 8 | r[1][0]=xy - wz; r[1][1]=T(1) - (xx+zz); r[1][2]=yz + wx; | |
| 222 | 8 | r[2][0]=xz + wy; r[2][1]=yz - wx; r[2][2]=T(1) - (xx+yy); | |
| 223 | |||
| 224 | if(MatType::numColumns() == 4) padMat4(r); | ||
| 225 | 8 | return r; | |
| 226 | } | ||
| 227 | |||
| 228 | |||
| 229 | |||
| 230 | /// @brief Return a matrix for rotation by @a angle radians about the given @a axis. | ||
| 231 | /// @param axis The axis (one of X, Y, Z) to rotate about. | ||
| 232 | /// @param angle The rotation angle, in radians. | ||
| 233 | template<class MatType> | ||
| 234 | MatType | ||
| 235 | 1 | rotation(Axis axis, typename MatType::value_type angle) | |
| 236 | { | ||
| 237 | using T = typename MatType::value_type; | ||
| 238 | 1 | T c = static_cast<T>(cos(angle)); | |
| 239 |
1/4✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
1 | T s = static_cast<T>(sin(angle)); |
| 240 | |||
| 241 | MatType result; | ||
| 242 | result.setIdentity(); | ||
| 243 | |||
| 244 |
1/4✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
1 | switch (axis) { |
| 245 | case X_AXIS: | ||
| 246 | 1 | result[1][1] = c; | |
| 247 | 1 | result[1][2] = s; | |
| 248 | 1 | result[2][1] = -s; | |
| 249 | 1 | result[2][2] = c; | |
| 250 | 1 | return result; | |
| 251 | case Y_AXIS: | ||
| 252 | ✗ | result[0][0] = c; | |
| 253 | ✗ | result[0][2] = -s; | |
| 254 | ✗ | result[2][0] = s; | |
| 255 | ✗ | result[2][2] = c; | |
| 256 | ✗ | return result; | |
| 257 | case Z_AXIS: | ||
| 258 | ✗ | result[0][0] = c; | |
| 259 | ✗ | result[0][1] = s; | |
| 260 | ✗ | result[1][0] = -s; | |
| 261 | ✗ | result[1][1] = c; | |
| 262 | ✗ | return result; | |
| 263 | ✗ | default: | |
| 264 | ✗ | throw ValueError("Unrecognized rotation axis"); | |
| 265 | } | ||
| 266 | } | ||
| 267 | |||
| 268 | |||
| 269 | /// @brief Return a matrix for rotation by @a angle radians about the given @a axis. | ||
| 270 | /// @note The axis must be a unit vector. | ||
| 271 | template<class MatType> | ||
| 272 | MatType | ||
| 273 | 9595635 | rotation(const Vec3<typename MatType::value_type> &_axis, typename MatType::value_type angle) | |
| 274 | { | ||
| 275 | using T = typename MatType::value_type; | ||
| 276 | T txy, txz, tyz, sx, sy, sz; | ||
| 277 | |||
| 278 | Vec3<T> axis(_axis.unit()); | ||
| 279 | |||
| 280 | // compute trig properties of angle: | ||
| 281 | 9595635 | T c(cos(double(angle))); | |
| 282 | 9595635 | T s(sin(double(angle))); | |
| 283 | 9595635 | T t(1 - c); | |
| 284 | |||
| 285 | MatType result; | ||
| 286 | // handle diagonal elements | ||
| 287 | 9595635 | result[0][0] = axis[0]*axis[0] * t + c; | |
| 288 | 9595635 | result[1][1] = axis[1]*axis[1] * t + c; | |
| 289 | 9595635 | result[2][2] = axis[2]*axis[2] * t + c; | |
| 290 | |||
| 291 | 9595635 | txy = axis[0]*axis[1] * t; | |
| 292 | 9595635 | sz = axis[2] * s; | |
| 293 | |||
| 294 | 9595635 | txz = axis[0]*axis[2] * t; | |
| 295 | 9595635 | sy = axis[1] * s; | |
| 296 | |||
| 297 | 9595635 | tyz = axis[1]*axis[2] * t; | |
| 298 | 9595635 | sx = axis[0] * s; | |
| 299 | |||
| 300 | // right handed space | ||
| 301 | // Contribution from rotation about 'z' | ||
| 302 | 9595635 | result[0][1] = txy + sz; | |
| 303 | 9595635 | result[1][0] = txy - sz; | |
| 304 | // Contribution from rotation about 'y' | ||
| 305 | 9595635 | result[0][2] = txz - sy; | |
| 306 | 9595635 | result[2][0] = txz + sy; | |
| 307 | // Contribution from rotation about 'x' | ||
| 308 | 9595635 | result[1][2] = tyz + sx; | |
| 309 | 9595635 | result[2][1] = tyz - sx; | |
| 310 | |||
| 311 | if(MatType::numColumns() == 4) padMat4(result); | ||
| 312 | 9595635 | return MatType(result); | |
| 313 | } | ||
| 314 | |||
| 315 | |||
| 316 | /// @brief Return the Euler angles composing the given rotation matrix. | ||
| 317 | /// @details Optional axes arguments describe in what order elementary rotations | ||
| 318 | /// are applied. Note that in our convention, XYZ means Rz * Ry * Rx. | ||
| 319 | /// Because we are using rows rather than columns to represent the | ||
| 320 | /// local axes of a coordinate frame, the interpretation from a local | ||
| 321 | /// reference point of view is to first rotate about the x axis, then | ||
| 322 | /// about the newly rotated y axis, and finally by the new local z axis. | ||
| 323 | /// From a fixed reference point of view, the interpretation is to | ||
| 324 | /// rotate about the stationary world z, y, and x axes respectively. | ||
| 325 | /// | ||
| 326 | /// Irrespective of the Euler angle convention, in the case of distinct | ||
| 327 | /// axes, eulerAngles() returns the x, y, and z angles in the corresponding | ||
| 328 | /// x, y, z components of the returned Vec3. For the XZX convention, the | ||
| 329 | /// left X value is returned in Vec3.x, and the right X value in Vec3.y. | ||
| 330 | /// For the ZXZ convention the left Z value is returned in Vec3.z and | ||
| 331 | /// the right Z value in Vec3.y | ||
| 332 | /// | ||
| 333 | /// Examples of reconstructing r from its Euler angle decomposition | ||
| 334 | /// | ||
| 335 | /// v = eulerAngles(r, ZYX_ROTATION); | ||
| 336 | /// rx.setToRotation(Vec3d(1,0,0), v[0]); | ||
| 337 | /// ry.setToRotation(Vec3d(0,1,0), v[1]); | ||
| 338 | /// rz.setToRotation(Vec3d(0,0,1), v[2]); | ||
| 339 | /// r = rx * ry * rz; | ||
| 340 | /// | ||
| 341 | /// v = eulerAngles(r, ZXZ_ROTATION); | ||
| 342 | /// rz1.setToRotation(Vec3d(0,0,1), v[2]); | ||
| 343 | /// rx.setToRotation (Vec3d(1,0,0), v[0]); | ||
| 344 | /// rz2.setToRotation(Vec3d(0,0,1), v[1]); | ||
| 345 | /// r = rz2 * rx * rz1; | ||
| 346 | /// | ||
| 347 | /// v = eulerAngles(r, XZX_ROTATION); | ||
| 348 | /// rx1.setToRotation (Vec3d(1,0,0), v[0]); | ||
| 349 | /// rx2.setToRotation (Vec3d(1,0,0), v[1]); | ||
| 350 | /// rz.setToRotation (Vec3d(0,0,1), v[2]); | ||
| 351 | /// r = rx2 * rz * rx1; | ||
| 352 | /// | ||
| 353 | template<class MatType> | ||
| 354 | Vec3<typename MatType::value_type> | ||
| 355 | 2386375 | eulerAngles( | |
| 356 | const MatType& mat, | ||
| 357 | RotationOrder rotationOrder, | ||
| 358 | typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8)) | ||
| 359 | { | ||
| 360 | using ValueType = typename MatType::value_type; | ||
| 361 | using V = Vec3<ValueType>; | ||
| 362 | ValueType phi, theta, psi; | ||
| 363 | |||
| 364 |
4/9✓ Branch 0 taken 2386371 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 1 times.
✓ Branch 6 taken 1 times.
✓ Branch 7 taken 1 times.
✗ Branch 8 not taken.
|
2386375 | switch(rotationOrder) |
| 365 | { | ||
| 366 |
2/2✓ Branch 0 taken 48384 times.
✓ Branch 1 taken 2337987 times.
|
2386371 | case XYZ_ROTATION: |
| 367 |
2/2✓ Branch 0 taken 48384 times.
✓ Branch 1 taken 2337987 times.
|
2386371 | if (isApproxEqual(mat[2][0], ValueType(1.0), eps)) { |
| 368 | theta = ValueType(M_PI_2); | ||
| 369 | 48384 | phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1])); | |
| 370 | psi = phi; | ||
| 371 |
2/2✓ Branch 0 taken 48384 times.
✓ Branch 1 taken 2289603 times.
|
2337987 | } else if (isApproxEqual(mat[2][0], ValueType(-1.0), eps)) { |
| 372 | theta = ValueType(-M_PI_2); | ||
| 373 | 48384 | phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1])); | |
| 374 | 48384 | psi = -phi; | |
| 375 | } else { | ||
| 376 | 2289603 | psi = ValueType(atan2(-mat[1][0],mat[0][0])); | |
| 377 | 2289603 | phi = ValueType(atan2(-mat[2][1],mat[2][2])); | |
| 378 | 2289603 | theta = ValueType(atan2(mat[2][0], | |
| 379 | 2289603 | sqrt( mat[2][1]*mat[2][1] + | |
| 380 | 2289603 | mat[2][2]*mat[2][2]))); | |
| 381 | } | ||
| 382 | ✗ | return V(phi, theta, psi); | |
| 383 | ✗ | case ZXY_ROTATION: | |
| 384 | ✗ | if (isApproxEqual(mat[1][2], ValueType(1.0), eps)) { | |
| 385 | theta = ValueType(M_PI_2); | ||
| 386 | ✗ | phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0])); | |
| 387 | psi = phi; | ||
| 388 | ✗ | } else if (isApproxEqual(mat[1][2], ValueType(-1.0), eps)) { | |
| 389 | theta = ValueType(-M_PI/2); | ||
| 390 | ✗ | phi = ValueType(0.5 * atan2(mat[0][1],mat[2][1])); | |
| 391 | ✗ | psi = -phi; | |
| 392 | } else { | ||
| 393 | ✗ | psi = ValueType(atan2(-mat[0][2], mat[2][2])); | |
| 394 | ✗ | phi = ValueType(atan2(-mat[1][0], mat[1][1])); | |
| 395 | ✗ | theta = ValueType(atan2(mat[1][2], | |
| 396 | ✗ | sqrt(mat[0][2] * mat[0][2] + | |
| 397 | ✗ | mat[2][2] * mat[2][2]))); | |
| 398 | } | ||
| 399 | ✗ | return V(theta, psi, phi); | |
| 400 | |||
| 401 | ✗ | case YZX_ROTATION: | |
| 402 | ✗ | if (isApproxEqual(mat[0][1], ValueType(1.0), eps)) { | |
| 403 | theta = ValueType(M_PI_2); | ||
| 404 | ✗ | phi = ValueType(0.5 * atan2(mat[2][0], mat[2][2])); | |
| 405 | psi = phi; | ||
| 406 | ✗ | } else if (isApproxEqual(mat[0][1], ValueType(-1.0), eps)) { | |
| 407 | theta = ValueType(-M_PI/2); | ||
| 408 | ✗ | phi = ValueType(0.5 * atan2(mat[2][0], mat[1][0])); | |
| 409 | ✗ | psi = -phi; | |
| 410 | } else { | ||
| 411 | ✗ | psi = ValueType(atan2(-mat[2][1], mat[1][1])); | |
| 412 | ✗ | phi = ValueType(atan2(-mat[0][2], mat[0][0])); | |
| 413 | ✗ | theta = ValueType(atan2(mat[0][1], | |
| 414 | ✗ | sqrt(mat[0][0] * mat[0][0] + | |
| 415 | ✗ | mat[0][2] * mat[0][2]))); | |
| 416 | } | ||
| 417 | ✗ | return V(psi, phi, theta); | |
| 418 | |||
| 419 | ✗ | case XZX_ROTATION: | |
| 420 | |||
| 421 | ✗ | if (isApproxEqual(mat[0][0], ValueType(1.0), eps)) { | |
| 422 | theta = ValueType(0.0); | ||
| 423 | ✗ | phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1])); | |
| 424 | psi = phi; | ||
| 425 | ✗ | } else if (isApproxEqual(mat[0][0], ValueType(-1.0), eps)) { | |
| 426 | theta = ValueType(M_PI); | ||
| 427 | ✗ | psi = ValueType(0.5 * atan2(mat[2][1], -mat[1][1])); | |
| 428 | ✗ | phi = - psi; | |
| 429 | } else { | ||
| 430 | ✗ | psi = ValueType(atan2(mat[2][0], -mat[1][0])); | |
| 431 | ✗ | phi = ValueType(atan2(mat[0][2], mat[0][1])); | |
| 432 | ✗ | theta = ValueType(atan2(sqrt(mat[0][1] * mat[0][1] + | |
| 433 | ✗ | mat[0][2] * mat[0][2]), | |
| 434 | ✗ | mat[0][0])); | |
| 435 | } | ||
| 436 | ✗ | return V(phi, psi, theta); | |
| 437 | |||
| 438 | ✗ | case ZXZ_ROTATION: | |
| 439 | |||
| 440 | ✗ | if (isApproxEqual(mat[2][2], ValueType(1.0), eps)) { | |
| 441 | theta = ValueType(0.0); | ||
| 442 | ✗ | phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0])); | |
| 443 | psi = phi; | ||
| 444 | ✗ | } else if (isApproxEqual(mat[2][2], ValueType(-1.0), eps)) { | |
| 445 | theta = ValueType(M_PI); | ||
| 446 | ✗ | phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0])); | |
| 447 | ✗ | psi = -phi; | |
| 448 | } else { | ||
| 449 | ✗ | psi = ValueType(atan2(mat[0][2], mat[1][2])); | |
| 450 | ✗ | phi = ValueType(atan2(mat[2][0], -mat[2][1])); | |
| 451 | ✗ | theta = ValueType(atan2(sqrt(mat[0][2] * mat[0][2] + | |
| 452 | ✗ | mat[1][2] * mat[1][2]), | |
| 453 | ✗ | mat[2][2])); | |
| 454 | } | ||
| 455 | ✗ | return V(theta, psi, phi); | |
| 456 | |||
| 457 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | case YXZ_ROTATION: |
| 458 | |||
| 459 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | if (isApproxEqual(mat[2][1], ValueType(1.0), eps)) { |
| 460 | theta = ValueType(-M_PI_2); | ||
| 461 | ✗ | phi = ValueType(0.5 * atan2(-mat[1][0], mat[0][0])); | |
| 462 | psi = phi; | ||
| 463 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | } else if (isApproxEqual(mat[2][1], ValueType(-1.0), eps)) { |
| 464 | theta = ValueType(M_PI_2); | ||
| 465 | ✗ | phi = ValueType(0.5 * atan2(mat[1][0], mat[0][0])); | |
| 466 | ✗ | psi = -phi; | |
| 467 | } else { | ||
| 468 | 1 | psi = ValueType(atan2(mat[0][1], mat[1][1])); | |
| 469 | 1 | phi = ValueType(atan2(mat[2][0], mat[2][2])); | |
| 470 | 1 | theta = ValueType(atan2(-mat[2][1], | |
| 471 | 1 | sqrt(mat[0][1] * mat[0][1] + | |
| 472 | 1 | mat[1][1] * mat[1][1]))); | |
| 473 | } | ||
| 474 | ✗ | return V(theta, phi, psi); | |
| 475 | |||
| 476 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | case ZYX_ROTATION: |
| 477 | |||
| 478 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | if (isApproxEqual(mat[0][2], ValueType(1.0), eps)) { |
| 479 | theta = ValueType(-M_PI_2); | ||
| 480 | ✗ | phi = ValueType(0.5 * atan2(-mat[1][0], mat[1][1])); | |
| 481 | psi = phi; | ||
| 482 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | } else if (isApproxEqual(mat[0][2], ValueType(-1.0), eps)) { |
| 483 | theta = ValueType(M_PI_2); | ||
| 484 | ✗ | phi = ValueType(0.5 * atan2(mat[2][1], mat[2][0])); | |
| 485 | ✗ | psi = -phi; | |
| 486 | } else { | ||
| 487 | 1 | psi = ValueType(atan2(mat[1][2], mat[2][2])); | |
| 488 | 1 | phi = ValueType(atan2(mat[0][1], mat[0][0])); | |
| 489 | 1 | theta = ValueType(atan2(-mat[0][2], | |
| 490 | 1 | sqrt(mat[0][1] * mat[0][1] + | |
| 491 | 1 | mat[0][0] * mat[0][0]))); | |
| 492 | } | ||
| 493 | ✗ | return V(psi, theta, phi); | |
| 494 | |||
| 495 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
2 | case XZY_ROTATION: |
| 496 | |||
| 497 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
2 | if (isApproxEqual(mat[1][0], ValueType(-1.0), eps)) { |
| 498 | theta = ValueType(M_PI_2); | ||
| 499 | ✗ | psi = ValueType(0.5 * atan2(mat[2][1], mat[2][2])); | |
| 500 | ✗ | phi = -psi; | |
| 501 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
2 | } else if (isApproxEqual(mat[1][0], ValueType(1.0), eps)) { |
| 502 | theta = ValueType(-M_PI_2); | ||
| 503 | ✗ | psi = ValueType(0.5 * atan2(- mat[2][1], mat[2][2])); | |
| 504 | phi = psi; | ||
| 505 | } else { | ||
| 506 | 2 | psi = ValueType(atan2(mat[2][0], mat[0][0])); | |
| 507 | 2 | phi = ValueType(atan2(mat[1][2], mat[1][1])); | |
| 508 | 2 | theta = ValueType(atan2(- mat[1][0], | |
| 509 | 2 | sqrt(mat[1][1] * mat[1][1] + | |
| 510 | 2 | mat[1][2] * mat[1][2]))); | |
| 511 | } | ||
| 512 | 2 | return V(phi, psi, theta); | |
| 513 | } | ||
| 514 | |||
| 515 | ✗ | OPENVDB_THROW(NotImplementedError, "Euler extraction sequence not implemented"); | |
| 516 | } | ||
| 517 | |||
| 518 | |||
| 519 | /// @brief Return a rotation matrix that maps @a v1 onto @a v2 | ||
| 520 | /// about the cross product of @a v1 and @a v2. | ||
| 521 | /// <a name="rotation_v1_v2"></a> | ||
| 522 | template<typename MatType, typename ValueType1, typename ValueType2> | ||
| 523 | inline MatType | ||
| 524 | 14 | rotation( | |
| 525 | const Vec3<ValueType1>& _v1, | ||
| 526 | const Vec3<ValueType2>& _v2, | ||
| 527 | typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8)) | ||
| 528 | { | ||
| 529 | using T = typename MatType::value_type; | ||
| 530 | |||
| 531 | 14 | Vec3<T> v1(_v1); | |
| 532 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 14 times.
|
14 | Vec3<T> v2(_v2); |
| 533 | |||
| 534 | // Check if v1 and v2 are unit length | ||
| 535 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 14 times.
|
14 | if (!isApproxEqual(T(1), v1.dot(v1), eps)) { |
| 536 | ✗ | v1.normalize(); | |
| 537 | } | ||
| 538 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 10 times.
|
14 | if (!isApproxEqual(T(1), v2.dot(v2), eps)) { |
| 539 | 4 | v2.normalize(); | |
| 540 | } | ||
| 541 | |||
| 542 | Vec3<T> cross; | ||
| 543 | cross.cross(v1, v2); | ||
| 544 | |||
| 545 |
1/2✓ Branch 0 taken 11 times.
✗ Branch 1 not taken.
|
11 | if (isApproxEqual(cross[0], zeroVal<T>(), eps) && |
| 546 |
4/4✓ Branch 0 taken 11 times.
✓ Branch 1 taken 3 times.
✓ Branch 2 taken 8 times.
✓ Branch 3 taken 3 times.
|
25 | isApproxEqual(cross[1], zeroVal<T>(), eps) && |
| 547 | isApproxEqual(cross[2], zeroVal<T>(), eps)) { | ||
| 548 | |||
| 549 | |||
| 550 | // Given two unit vectors v1 and v2 that are nearly parallel, build a | ||
| 551 | // rotation matrix that maps v1 onto v2. First find which principal axis | ||
| 552 | // p is closest to perpendicular to v1. Find a reflection that exchanges | ||
| 553 | // v1 and p, and find a reflection that exchanges p2 and v2. The desired | ||
| 554 | // rotation matrix is the composition of these two reflections. See the | ||
| 555 | // paper "Efficiently Building a Matrix to Rotate One Vector to | ||
| 556 | // Another" by Tomas Moller and John Hughes in Journal of Graphics | ||
| 557 | // Tools Vol 4, No 4 for details. | ||
| 558 | |||
| 559 | Vec3<T> u, v, p(0.0, 0.0, 0.0); | ||
| 560 | |||
| 561 | double x = Abs(v1[0]); | ||
| 562 | double y = Abs(v1[1]); | ||
| 563 | double z = Abs(v1[2]); | ||
| 564 | |||
| 565 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 4 times.
|
8 | if (x < y) { |
| 566 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 4 times.
|
4 | if (z < x) { |
| 567 | ✗ | p[2] = 1; | |
| 568 | } else { | ||
| 569 | 4 | p[0] = 1; | |
| 570 | } | ||
| 571 | } else { | ||
| 572 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 4 times.
|
4 | if (z < y) { |
| 573 | ✗ | p[2] = 1; | |
| 574 | } else { | ||
| 575 | 4 | p[1] = 1; | |
| 576 | } | ||
| 577 | } | ||
| 578 | 8 | u = p - v1; | |
| 579 | 8 | v = p - v2; | |
| 580 | |||
| 581 | double udot = u.dot(u); | ||
| 582 | double vdot = v.dot(v); | ||
| 583 | |||
| 584 | 8 | double a = -2 / udot; | |
| 585 | 8 | double b = -2 / vdot; | |
| 586 | 8 | double c = 4 * u.dot(v) / (udot * vdot); | |
| 587 | |||
| 588 | MatType result; | ||
| 589 | result.setIdentity(); | ||
| 590 | |||
| 591 |
2/2✓ Branch 0 taken 24 times.
✓ Branch 1 taken 8 times.
|
32 | for (int j = 0; j < 3; j++) { |
| 592 |
2/2✓ Branch 0 taken 72 times.
✓ Branch 1 taken 24 times.
|
96 | for (int i = 0; i < 3; i++) |
| 593 | 72 | result[i][j] = static_cast<T>( | |
| 594 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 72 times.
|
72 | a * u[i] * u[j] + b * v[i] * v[j] + c * v[j] * u[i]); |
| 595 | } | ||
| 596 | 8 | result[0][0] += 1.0; | |
| 597 | 8 | result[1][1] += 1.0; | |
| 598 | 8 | result[2][2] += 1.0; | |
| 599 | |||
| 600 | if(MatType::numColumns() == 4) padMat4(result); | ||
| 601 | 8 | return result; | |
| 602 | |||
| 603 | } else { | ||
| 604 | double c = v1.dot(v2); | ||
| 605 | 6 | double a = (1.0 - c) / cross.dot(cross); | |
| 606 | |||
| 607 | 6 | double a0 = a * cross[0]; | |
| 608 | 6 | double a1 = a * cross[1]; | |
| 609 | 6 | double a2 = a * cross[2]; | |
| 610 | |||
| 611 | 6 | double a01 = a0 * cross[1]; | |
| 612 | 6 | double a02 = a0 * cross[2]; | |
| 613 | 6 | double a12 = a1 * cross[2]; | |
| 614 | |||
| 615 | MatType r; | ||
| 616 | |||
| 617 | 6 | r[0][0] = static_cast<T>(c + a0 * cross[0]); | |
| 618 | 6 | r[0][1] = static_cast<T>(a01 + cross[2]); | |
| 619 | 6 | r[0][2] = static_cast<T>(a02 - cross[1]); | |
| 620 | 6 | r[1][0] = static_cast<T>(a01 - cross[2]); | |
| 621 | 6 | r[1][1] = static_cast<T>(c + a1 * cross[1]); | |
| 622 | 6 | r[1][2] = static_cast<T>(a12 + cross[0]); | |
| 623 | 6 | r[2][0] = static_cast<T>(a02 + cross[1]); | |
| 624 | 6 | r[2][1] = static_cast<T>(a12 - cross[0]); | |
| 625 | 6 | r[2][2] = static_cast<T>(c + a2 * cross[2]); | |
| 626 | |||
| 627 | if(MatType::numColumns() == 4) padMat4(r); | ||
| 628 | 6 | return r; | |
| 629 | |||
| 630 | } | ||
| 631 | } | ||
| 632 | |||
| 633 | |||
| 634 | /// Return a matrix that scales by @a s. | ||
| 635 | template<class MatType> | ||
| 636 | MatType | ||
| 637 | 14619543 | scale(const Vec3<typename MatType::value_type>& s) | |
| 638 | { | ||
| 639 | // Gets identity, then sets top 3 diagonal | ||
| 640 | // Inefficient by 3 sets. | ||
| 641 | |||
| 642 | MatType result; | ||
| 643 | result.setIdentity(); | ||
| 644 | 14619543 | result[0][0] = s[0]; | |
| 645 | 14619543 | result[1][1] = s[1]; | |
| 646 | 14619543 | result[2][2] = s[2]; | |
| 647 | |||
| 648 | 14619543 | return result; | |
| 649 | } | ||
| 650 | |||
| 651 | |||
| 652 | /// Return a Vec3 representing the lengths of the passed matrix's upper 3×3's rows. | ||
| 653 | template<class MatType> | ||
| 654 | Vec3<typename MatType::value_type> | ||
| 655 | 16 | getScale(const MatType &mat) | |
| 656 | { | ||
| 657 | using V = Vec3<typename MatType::value_type>; | ||
| 658 | return V( | ||
| 659 | V(mat[0][0], mat[0][1], mat[0][2]).length(), | ||
| 660 | V(mat[1][0], mat[1][1], mat[1][2]).length(), | ||
| 661 | 16 | V(mat[2][0], mat[2][1], mat[2][2]).length()); | |
| 662 | } | ||
| 663 | |||
| 664 | |||
| 665 | /// @brief Return a copy of the given matrix with its upper 3×3 rows normalized. | ||
| 666 | /// @details This can be geometrically interpreted as a matrix with no scaling | ||
| 667 | /// along its major axes. | ||
| 668 | template<class MatType> | ||
| 669 | MatType | ||
| 670 | 32 | unit(const MatType &mat, typename MatType::value_type eps = 1.0e-8) | |
| 671 | { | ||
| 672 | Vec3<typename MatType::value_type> dud; | ||
| 673 | 32 | return unit(mat, eps, dud); | |
| 674 | } | ||
| 675 | |||
| 676 | |||
| 677 | /// @brief Return a copy of the given matrix with its upper 3×3 rows normalized, | ||
| 678 | /// and return the length of each of these rows in @a scaling. | ||
| 679 | /// @details This can be geometrically interpretted as a matrix with no scaling | ||
| 680 | /// along its major axes, and the scaling in the input vector | ||
| 681 | template<class MatType> | ||
| 682 | MatType | ||
| 683 | 32 | unit( | |
| 684 | const MatType &in, | ||
| 685 | typename MatType::value_type eps, | ||
| 686 | Vec3<typename MatType::value_type>& scaling) | ||
| 687 | { | ||
| 688 | using T = typename MatType::value_type; | ||
| 689 | 32 | MatType result(in); | |
| 690 | |||
| 691 |
2/2✓ Branch 0 taken 96 times.
✓ Branch 1 taken 32 times.
|
128 | for (int i(0); i < 3; i++) { |
| 692 | try { | ||
| 693 |
2/6✗ Branch 0 not taken.
✓ Branch 1 taken 96 times.
✓ Branch 3 taken 96 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
|
96 | const Vec3<T> u( |
| 694 | Vec3<T>(in[i][0], in[i][1], in[i][2]).unit(eps, scaling[i])); | ||
| 695 |
3/4✓ Branch 0 taken 288 times.
✓ Branch 1 taken 96 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 288 times.
|
384 | for (int j=0; j<3; j++) result[i][j] = u[j]; |
| 696 | ✗ | } catch (ArithmeticError&) { | |
| 697 | ✗ | for (int j=0; j<3; j++) result[i][j] = 0; | |
| 698 | } | ||
| 699 | } | ||
| 700 | 32 | return result; | |
| 701 | } | ||
| 702 | |||
| 703 | |||
| 704 | /// @brief Set the matrix to a shear along @a axis0 by a fraction of @a axis1. | ||
| 705 | /// @param axis0 The fixed axis of the shear. | ||
| 706 | /// @param axis1 The shear axis. | ||
| 707 | /// @param shear The shear factor. | ||
| 708 | template <class MatType> | ||
| 709 | MatType | ||
| 710 | 2 | shear(Axis axis0, Axis axis1, typename MatType::value_type shear) | |
| 711 | { | ||
| 712 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
2 | int index0 = static_cast<int>(axis0); |
| 713 | int index1 = static_cast<int>(axis1); | ||
| 714 | |||
| 715 | MatType result; | ||
| 716 | result.setIdentity(); | ||
| 717 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
|
2 | if (axis0 == axis1) { |
| 718 | ✗ | result[index1][index0] = shear + 1; | |
| 719 | } else { | ||
| 720 | 2 | result[index1][index0] = shear; | |
| 721 | } | ||
| 722 | |||
| 723 | 2 | return result; | |
| 724 | } | ||
| 725 | |||
| 726 | |||
| 727 | /// Return a matrix as the cross product of the given vector. | ||
| 728 | template<class MatType> | ||
| 729 | MatType | ||
| 730 | skew(const Vec3<typename MatType::value_type> &skew) | ||
| 731 | { | ||
| 732 | using T = typename MatType::value_type; | ||
| 733 | |||
| 734 | MatType r; | ||
| 735 | r[0][0] = T(0); r[0][1] = skew.z(); r[0][2] = -skew.y(); | ||
| 736 | r[1][0] = -skew.z(); r[1][1] = T(0); r[2][1] = skew.x(); | ||
| 737 | r[2][0] = skew.y(); r[2][1] = -skew.x(); r[2][2] = T(0); | ||
| 738 | |||
| 739 | if(MatType::numColumns() == 4) padMat4(r); | ||
| 740 | return r; | ||
| 741 | } | ||
| 742 | |||
| 743 | |||
| 744 | /// @brief Return an orientation matrix such that z points along @a direction, | ||
| 745 | /// and y is along the @a direction / @a vertical plane. | ||
| 746 | template<class MatType> | ||
| 747 | MatType | ||
| 748 | aim(const Vec3<typename MatType::value_type>& direction, | ||
| 749 | const Vec3<typename MatType::value_type>& vertical) | ||
| 750 | { | ||
| 751 | using T = typename MatType::value_type; | ||
| 752 | Vec3<T> forward(direction.unit()); | ||
| 753 | Vec3<T> horizontal(vertical.unit().cross(forward).unit()); | ||
| 754 | Vec3<T> up(forward.cross(horizontal).unit()); | ||
| 755 | |||
| 756 | MatType r; | ||
| 757 | |||
| 758 | r[0][0]=horizontal.x(); r[0][1]=horizontal.y(); r[0][2]=horizontal.z(); | ||
| 759 | r[1][0]=up.x(); r[1][1]=up.y(); r[1][2]=up.z(); | ||
| 760 | r[2][0]=forward.x(); r[2][1]=forward.y(); r[2][2]=forward.z(); | ||
| 761 | |||
| 762 | if(MatType::numColumns() == 4) padMat4(r); | ||
| 763 | return r; | ||
| 764 | } | ||
| 765 | |||
| 766 | /// @brief This function snaps a specific axis to a specific direction, | ||
| 767 | /// preserving scaling. | ||
| 768 | /// @details It does this using minimum energy, thus posing a unique solution if | ||
| 769 | /// basis & direction aren't parallel. | ||
| 770 | /// @note @a direction need not be unit. | ||
| 771 | template<class MatType> | ||
| 772 | inline MatType | ||
| 773 | snapMatBasis(const MatType& source, Axis axis, const Vec3<typename MatType::value_type>& direction) | ||
| 774 | { | ||
| 775 | using T = typename MatType::value_type; | ||
| 776 | |||
| 777 | Vec3<T> unitDir(direction.unit()); | ||
| 778 | Vec3<T> ourUnitAxis(source.row(axis).unit()); | ||
| 779 | |||
| 780 | // Are the two parallel? | ||
| 781 | T parallel = unitDir.dot(ourUnitAxis); | ||
| 782 | |||
| 783 | // Already snapped! | ||
| 784 | if (isApproxEqual(parallel, T(1.0))) return source; | ||
| 785 | |||
| 786 | if (isApproxEqual(parallel, T(-1.0))) { | ||
| 787 | OPENVDB_THROW(ValueError, "Cannot snap to inverse axis"); | ||
| 788 | } | ||
| 789 | |||
| 790 | // Find angle between our basis and the one specified | ||
| 791 | T angleBetween(angle(unitDir, ourUnitAxis)); | ||
| 792 | // Caclulate axis to rotate along | ||
| 793 | Vec3<T> rotationAxis = unitDir.cross(ourUnitAxis); | ||
| 794 | |||
| 795 | MatType rotation; | ||
| 796 | rotation.setToRotation(rotationAxis, angleBetween); | ||
| 797 | |||
| 798 | return source * rotation; | ||
| 799 | } | ||
| 800 | |||
| 801 | /// @brief Write 0s along Mat4's last row and column, and a 1 on its diagonal. | ||
| 802 | /// @details Useful initialization when we're initializing just the 3×3 block. | ||
| 803 | template<class MatType> | ||
| 804 | inline MatType& | ||
| 805 | padMat4(MatType& dest) | ||
| 806 | { | ||
| 807 | 1218275 | dest[0][3] = dest[1][3] = dest[2][3] = 0; | |
| 808 | 1218275 | dest[3][2] = dest[3][1] = dest[3][0] = 0; | |
| 809 | 1218275 | dest[3][3] = 1; | |
| 810 | |||
| 811 | return dest; | ||
| 812 | } | ||
| 813 | |||
| 814 | |||
| 815 | /// @brief Solve for A=B*B, given A. | ||
| 816 | /// @details Denman-Beavers square root iteration | ||
| 817 | template<typename MatType> | ||
| 818 | inline void | ||
| 819 | sqrtSolve(const MatType& aA, MatType& aB, double aTol=0.01) | ||
| 820 | { | ||
| 821 | unsigned int iterations = static_cast<unsigned int>(log(aTol)/log(0.5)); | ||
| 822 | |||
| 823 | MatType Y[2], Z[2]; | ||
| 824 | Y[0] = aA; | ||
| 825 | Z[0] = MatType::identity(); | ||
| 826 | |||
| 827 | unsigned int current = 0; | ||
| 828 | for (unsigned int iteration=0; iteration < iterations; iteration++) { | ||
| 829 | unsigned int last = current; | ||
| 830 | current = !current; | ||
| 831 | |||
| 832 | MatType invY = Y[last].inverse(); | ||
| 833 | MatType invZ = Z[last].inverse(); | ||
| 834 | |||
| 835 | Y[current] = 0.5 * (Y[last] + invZ); | ||
| 836 | Z[current] = 0.5 * (Z[last] + invY); | ||
| 837 | } | ||
| 838 | aB = Y[current]; | ||
| 839 | } | ||
| 840 | |||
| 841 | |||
| 842 | template<typename MatType> | ||
| 843 | inline void | ||
| 844 | powSolve(const MatType& aA, MatType& aB, double aPower, double aTol=0.01) | ||
| 845 | { | ||
| 846 | unsigned int iterations = static_cast<unsigned int>(log(aTol)/log(0.5)); | ||
| 847 | |||
| 848 | const bool inverted = (aPower < 0.0); | ||
| 849 | if (inverted) { aPower = -aPower; } | ||
| 850 | |||
| 851 | unsigned int whole = static_cast<unsigned int>(aPower); | ||
| 852 | double fraction = aPower - whole; | ||
| 853 | |||
| 854 | MatType R = MatType::identity(); | ||
| 855 | MatType partial = aA; | ||
| 856 | |||
| 857 | double contribution = 1.0; | ||
| 858 | for (unsigned int iteration = 0; iteration < iterations; iteration++) { | ||
| 859 | sqrtSolve(partial, partial, aTol); | ||
| 860 | contribution *= 0.5; | ||
| 861 | if (fraction >= contribution) { | ||
| 862 | R *= partial; | ||
| 863 | fraction -= contribution; | ||
| 864 | } | ||
| 865 | } | ||
| 866 | |||
| 867 | partial = aA; | ||
| 868 | while (whole) { | ||
| 869 | if (whole & 1) { R *= partial; } | ||
| 870 | whole >>= 1; | ||
| 871 | if (whole) { partial *= partial; } | ||
| 872 | } | ||
| 873 | |||
| 874 | if (inverted) { aB = R.inverse(); } | ||
| 875 | else { aB = R; } | ||
| 876 | } | ||
| 877 | |||
| 878 | |||
| 879 | /// @brief Determine if a matrix is an identity matrix. | ||
| 880 | template<typename MatType> | ||
| 881 | inline bool | ||
| 882 | 365 | isIdentity(const MatType& m) | |
| 883 | { | ||
| 884 | 365 | return m.eq(MatType::identity()); | |
| 885 | } | ||
| 886 | |||
| 887 | |||
| 888 | /// @brief Determine if a matrix is invertible. | ||
| 889 | template<typename MatType> | ||
| 890 | inline bool | ||
| 891 | isInvertible(const MatType& m) | ||
| 892 | { | ||
| 893 | using ValueType = typename MatType::ValueType; | ||
| 894 | 1 | return !isApproxEqual(m.det(), ValueType(0)); | |
| 895 | } | ||
| 896 | |||
| 897 | |||
| 898 | /// @brief Determine if a matrix is symmetric. | ||
| 899 | /// @details This implicitly uses math::isApproxEqual() to determine equality. | ||
| 900 | template<typename MatType> | ||
| 901 | inline bool | ||
| 902 | 1 | isSymmetric(const MatType& m) | |
| 903 | { | ||
| 904 | 1 | return m.eq(m.transpose()); | |
| 905 | } | ||
| 906 | |||
| 907 | |||
| 908 | /// Determine if a matrix is unitary (i.e., rotation or reflection). | ||
| 909 | template<typename MatType> | ||
| 910 | inline bool | ||
| 911 | 11 | isUnitary(const MatType& m) | |
| 912 | { | ||
| 913 | using ValueType = typename MatType::ValueType; | ||
| 914 |
1/2✓ Branch 0 taken 11 times.
✗ Branch 1 not taken.
|
11 | if (!isApproxEqual(std::abs(m.det()), ValueType(1.0))) return false; |
| 915 | // check that the matrix transpose is the inverse | ||
| 916 | 11 | MatType temp = m * m.transpose(); | |
| 917 | 11 | return temp.eq(MatType::identity()); | |
| 918 | } | ||
| 919 | |||
| 920 | |||
| 921 | /// Determine if a matrix is diagonal. | ||
| 922 | template<typename MatType> | ||
| 923 | inline bool | ||
| 924 | isDiagonal(const MatType& mat) | ||
| 925 | { | ||
| 926 | int n = MatType::size; | ||
| 927 | typename MatType::ValueType temp(0); | ||
| 928 |
4/4✓ Branch 0 taken 1044 times.
✓ Branch 1 taken 261 times.
✓ Branch 2 taken 303 times.
✓ Branch 3 taken 101 times.
|
1709 | for (int i = 0; i < n; ++i) { |
| 929 |
4/4✓ Branch 0 taken 4176 times.
✓ Branch 1 taken 1044 times.
✓ Branch 2 taken 909 times.
✓ Branch 3 taken 303 times.
|
6432 | for (int j = 0; j < n; ++j) { |
| 930 |
4/4✓ Branch 0 taken 3132 times.
✓ Branch 1 taken 1044 times.
✓ Branch 2 taken 606 times.
✓ Branch 3 taken 303 times.
|
5085 | if (i != j) { |
| 931 | 3738 | temp += std::abs(mat(i,j)); | |
| 932 | } | ||
| 933 | } | ||
| 934 | } | ||
| 935 | return isApproxEqual(temp, typename MatType::ValueType(0.0)); | ||
| 936 | } | ||
| 937 | |||
| 938 | |||
| 939 | /// Return the <i>L</i><sub>∞</sub> norm of an <i>N</i>×<i>N</i> matrix. | ||
| 940 | template<typename MatType> | ||
| 941 | typename MatType::ValueType | ||
| 942 | 226603422 | lInfinityNorm(const MatType& matrix) | |
| 943 | { | ||
| 944 | int n = MatType::size; | ||
| 945 | 226603422 | typename MatType::ValueType norm = 0; | |
| 946 | |||
| 947 |
2/2✓ Branch 0 taken 679810266 times.
✓ Branch 1 taken 226603422 times.
|
906413688 | for( int j = 0; j<n; ++j) { |
| 948 | 679810266 | typename MatType::ValueType column_sum = 0; | |
| 949 | |||
| 950 |
2/2✓ Branch 0 taken 2039430798 times.
✓ Branch 1 taken 679810266 times.
|
2719241064 | for (int i = 0; i<n; ++i) { |
| 951 | 2039430798 | column_sum += std::fabs(matrix(i,j)); | |
| 952 | } | ||
| 953 | 679810266 | norm = std::max(norm, column_sum); | |
| 954 | } | ||
| 955 | |||
| 956 | 226603422 | return norm; | |
| 957 | } | ||
| 958 | |||
| 959 | |||
| 960 | /// Return the <i>L</i><sub>1</sub> norm of an <i>N</i>×<i>N</i> matrix. | ||
| 961 | template<typename MatType> | ||
| 962 | typename MatType::ValueType | ||
| 963 | 151068948 | lOneNorm(const MatType& matrix) | |
| 964 | { | ||
| 965 | int n = MatType::size; | ||
| 966 | 151068948 | typename MatType::ValueType norm = 0; | |
| 967 | |||
| 968 |
2/2✓ Branch 0 taken 453206844 times.
✓ Branch 1 taken 151068948 times.
|
604275792 | for( int i = 0; i<n; ++i) { |
| 969 | 453206844 | typename MatType::ValueType row_sum = 0; | |
| 970 | |||
| 971 |
2/2✓ Branch 0 taken 1359620532 times.
✓ Branch 1 taken 453206844 times.
|
1812827376 | for (int j = 0; j<n; ++j) { |
| 972 | 1359620532 | row_sum += std::fabs(matrix(i,j)); | |
| 973 | } | ||
| 974 | 453206844 | norm = std::max(norm, row_sum); | |
| 975 | } | ||
| 976 | |||
| 977 | 151068948 | return norm; | |
| 978 | } | ||
| 979 | |||
| 980 | |||
| 981 | /// @brief Decompose an invertible 3×3 matrix into a unitary matrix | ||
| 982 | /// followed by a symmetric matrix (positive semi-definite Hermitian), | ||
| 983 | /// i.e., M = U * S. | ||
| 984 | /// @details If det(U) = 1 it is a rotation, otherwise det(U) = -1, | ||
| 985 | /// meaning there is some part reflection. | ||
| 986 | /// See "Computing the polar decomposition with applications" | ||
| 987 | /// Higham, N.J. - SIAM J. Sc. Stat Comput 7(4):1160-1174 | ||
| 988 | template<typename MatType> | ||
| 989 | bool | ||
| 990 | 12589079 | polarDecomposition(const MatType& input, MatType& unitary, | |
| 991 | MatType& positive_hermitian, unsigned int MAX_ITERATIONS=100) | ||
| 992 | { | ||
| 993 | 12589079 | unitary = input; | |
| 994 | 12589079 | MatType new_unitary(input); | |
| 995 | MatType unitary_inv; | ||
| 996 | |||
| 997 |
1/2✓ Branch 0 taken 12589079 times.
✗ Branch 1 not taken.
|
12589079 | if (fabs(unitary.det()) < math::Tolerance<typename MatType::ValueType>::value()) return false; |
| 998 | |||
| 999 | unsigned int iteration(0); | ||
| 1000 | |||
| 1001 | typename MatType::ValueType linf_of_u; | ||
| 1002 | typename MatType::ValueType l1nm_of_u; | ||
| 1003 | typename MatType::ValueType linf_of_u_inv; | ||
| 1004 | typename MatType::ValueType l1nm_of_u_inv; | ||
| 1005 | typename MatType::ValueType l1_error = 100; | ||
| 1006 | double gamma; | ||
| 1007 | |||
| 1008 | do { | ||
| 1009 | 75534474 | unitary_inv = unitary.inverse(); | |
| 1010 | 75534474 | linf_of_u = lInfinityNorm(unitary); | |
| 1011 | 75534474 | l1nm_of_u = lOneNorm(unitary); | |
| 1012 | |||
| 1013 | 75534474 | linf_of_u_inv = lInfinityNorm(unitary_inv); | |
| 1014 | 75534474 | l1nm_of_u_inv = lOneNorm(unitary_inv); | |
| 1015 | |||
| 1016 | 75534474 | gamma = sqrt( sqrt( (l1nm_of_u_inv * linf_of_u_inv ) / (l1nm_of_u * linf_of_u) )); | |
| 1017 | |||
| 1018 | 75534474 | new_unitary = 0.5*(gamma * unitary + (1./gamma) * unitary_inv.transpose() ); | |
| 1019 | |||
| 1020 | 75534474 | l1_error = lInfinityNorm(unitary - new_unitary); | |
| 1021 | 75534474 | unitary = new_unitary; | |
| 1022 | |||
| 1023 | /// this generally converges in less than ten iterations | ||
| 1024 |
1/2✓ Branch 0 taken 75534474 times.
✗ Branch 1 not taken.
|
75534474 | if (iteration > MAX_ITERATIONS) return false; |
| 1025 | 75534474 | iteration++; | |
| 1026 |
2/2✓ Branch 0 taken 62945395 times.
✓ Branch 1 taken 12589079 times.
|
75534474 | } while (l1_error > math::Tolerance<typename MatType::ValueType>::value()); |
| 1027 | |||
| 1028 | 12589079 | positive_hermitian = unitary.transpose() * input; | |
| 1029 | 12589079 | return true; | |
| 1030 | } | ||
| 1031 | |||
| 1032 | //////////////////////////////////////// | ||
| 1033 | |||
| 1034 | /// @return true if m0 < m1, comparing components in order of significance. | ||
| 1035 | template<unsigned SIZE, typename T> | ||
| 1036 | inline bool | ||
| 1037 | cwiseLessThan(const Mat<SIZE, T>& m0, const Mat<SIZE, T>& m1) | ||
| 1038 | { | ||
| 1039 | const T* m0p = m0.asPointer(); | ||
| 1040 | const T* m1p = m1.asPointer(); | ||
| 1041 | constexpr unsigned size = SIZE*SIZE; | ||
| 1042 | ✗ | for (unsigned i = 0; i < size-1; ++i, ++m0p, ++m1p) { | |
| 1043 | ✗ | if (!math::isExactlyEqual(*m0p, *m1p)) return *m0p < *m1p; | |
| 1044 | } | ||
| 1045 | ✗ | return *m0p < *m1p; | |
| 1046 | } | ||
| 1047 | |||
| 1048 | /// @return true if m0 > m1, comparing components in order of significance. | ||
| 1049 | template<unsigned SIZE, typename T> | ||
| 1050 | inline bool | ||
| 1051 | cwiseGreaterThan(const Mat<SIZE, T>& m0, const Mat<SIZE, T>& m1) | ||
| 1052 | { | ||
| 1053 | const T* m0p = m0.asPointer(); | ||
| 1054 | const T* m1p = m1.asPointer(); | ||
| 1055 | constexpr unsigned size = SIZE*SIZE; | ||
| 1056 |
16/48✓ Branch 0 taken 960 times.
✓ Branch 1 taken 64 times.
✓ Branch 2 taken 1035 times.
✓ Branch 3 taken 69 times.
✓ Branch 4 taken 496 times.
✓ Branch 5 taken 62 times.
✓ Branch 6 taken 552 times.
✓ Branch 7 taken 69 times.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✗ Branch 13 not taken.
✗ Branch 14 not taken.
✗ Branch 15 not taken.
✗ Branch 16 not taken.
✗ Branch 17 not taken.
✗ Branch 18 not taken.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
✗ Branch 21 not taken.
✗ Branch 22 not taken.
✗ Branch 23 not taken.
✗ Branch 24 not taken.
✗ Branch 25 not taken.
✗ Branch 26 not taken.
✗ Branch 27 not taken.
✗ Branch 28 not taken.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
✗ Branch 31 not taken.
✗ Branch 32 not taken.
✗ Branch 33 not taken.
✗ Branch 34 not taken.
✗ Branch 35 not taken.
✗ Branch 36 not taken.
✗ Branch 37 not taken.
✗ Branch 38 not taken.
✗ Branch 39 not taken.
✓ Branch 40 taken 614250 times.
✓ Branch 41 taken 40950 times.
✓ Branch 42 taken 614250 times.
✓ Branch 43 taken 40950 times.
✓ Branch 44 taken 327600 times.
✓ Branch 45 taken 40950 times.
✓ Branch 46 taken 524160 times.
✓ Branch 47 taken 65520 times.
|
2271937 | for (unsigned i = 0; i < size-1; ++i, ++m0p, ++m1p) { |
| 1057 |
8/48✗ Branch 0 not taken.
✓ Branch 1 taken 960 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 1035 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 496 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 552 times.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
✗ Branch 10 not taken.
✗ Branch 11 not taken.
✗ Branch 12 not taken.
✗ Branch 13 not taken.
✗ Branch 14 not taken.
✗ Branch 15 not taken.
✗ Branch 16 not taken.
✗ Branch 17 not taken.
✗ Branch 18 not taken.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
✗ Branch 21 not taken.
✗ Branch 22 not taken.
✗ Branch 23 not taken.
✗ Branch 24 not taken.
✗ Branch 25 not taken.
✗ Branch 26 not taken.
✗ Branch 27 not taken.
✗ Branch 28 not taken.
✗ Branch 29 not taken.
✗ Branch 30 not taken.
✗ Branch 31 not taken.
✗ Branch 32 not taken.
✗ Branch 33 not taken.
✗ Branch 34 not taken.
✗ Branch 35 not taken.
✗ Branch 36 not taken.
✗ Branch 37 not taken.
✗ Branch 38 not taken.
✗ Branch 39 not taken.
✗ Branch 40 not taken.
✓ Branch 41 taken 614250 times.
✗ Branch 42 not taken.
✓ Branch 43 taken 614250 times.
✗ Branch 44 not taken.
✓ Branch 45 taken 327600 times.
✗ Branch 46 not taken.
✓ Branch 47 taken 524160 times.
|
2083303 | if (!math::isExactlyEqual(*m0p, *m1p)) return *m0p > *m1p; |
| 1058 | } | ||
| 1059 | 188634 | return *m0p > *m1p; | |
| 1060 | } | ||
| 1061 | |||
| 1062 | } // namespace math | ||
| 1063 | } // namespace OPENVDB_VERSION_NAME | ||
| 1064 | } // namespace openvdb | ||
| 1065 | |||
| 1066 | #endif // OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED | ||
| 1067 |