GCC Code Coverage Report


Directory: ./
File: openvdb/openvdb/tools/PoissonSolver.h
Date: 2022-07-25 17:40:05
Exec Total Coverage
Lines: 150 154 97.4%
Functions: 41 55 74.5%
Branches: 100 175 57.1%

Line Branch Exec Source
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: MPL-2.0
3 //
4 /// @file PoissonSolver.h
5 ///
6 /// @authors D.J. Hill, Peter Cucka
7 ///
8 /// @brief Solve Poisson's equation &nabla;<sup><small>2</small></sup><i>x</i> = <i>b</i>
9 /// for <i>x</i>, where @e b is a vector comprising the values of all of the active voxels
10 /// in a grid.
11 ///
12 /// @par Example:
13 /// Solve for the pressure in a cubic tank of liquid, assuming uniform boundary conditions:
14 /// @code
15 /// FloatTree source(/*background=*/0.0f);
16 /// // Activate voxels to indicate that they contain liquid.
17 /// source.fill(CoordBBox(Coord(0, -10, 0), Coord(10, 0, 10)), /*value=*/0.0f);
18 ///
19 /// math::pcg::State state = math::pcg::terminationDefaults<float>();
20 /// FloatTree::Ptr solution = tools::poisson::solve(source, state);
21 /// @endcode
22 ///
23 /// @par Example:
24 /// Solve for the pressure, <i>P</i>, in a cubic tank of liquid that is open at the top.
25 /// Boundary conditions are <i>P</i>&nbsp;=&nbsp;0 at the top,
26 /// &part;<i>P</i>/&part;<i>y</i>&nbsp;=&nbsp;&minus;1 at the bottom
27 /// and &part;<i>P</i>/&part;<i>x</i>&nbsp;=&nbsp;0 at the sides:
28 /// <pre>
29 /// P = 0
30 /// +--------+ (N,0,N)
31 /// /| /|
32 /// (0,0,0) +--------+ |
33 /// | | | | dP/dx = 0
34 /// dP/dx = 0 | +------|-+
35 /// |/ |/
36 /// (0,-N,0) +--------+ (N,-N,0)
37 /// dP/dy = -1
38 /// </pre>
39 /// @code
40 /// const int N = 10;
41 /// DoubleTree source(/*background=*/0.0);
42 /// // Activate voxels to indicate that they contain liquid.
43 /// source.fill(CoordBBox(Coord(0, -N, 0), Coord(N, 0, N)), /*value=*/0.0);
44 ///
45 /// auto boundary = [](const openvdb::Coord& ijk, const openvdb::Coord& neighbor,
46 /// double& source, double& diagonal)
47 /// {
48 /// if (neighbor.x() == ijk.x() && neighbor.z() == ijk.z()) {
49 /// if (neighbor.y() < ijk.y()) source -= 1.0;
50 /// else diagonal -= 1.0;
51 /// }
52 /// };
53 ///
54 /// math::pcg::State state = math::pcg::terminationDefaults<double>();
55 /// util::NullInterrupter interrupter;
56 ///
57 /// DoubleTree::Ptr solution = tools::poisson::solveWithBoundaryConditions(
58 /// source, boundary, state, interrupter);
59 /// @endcode
60
61 #ifndef OPENVDB_TOOLS_POISSONSOLVER_HAS_BEEN_INCLUDED
62 #define OPENVDB_TOOLS_POISSONSOLVER_HAS_BEEN_INCLUDED
63
64 #include <openvdb/Types.h>
65 #include <openvdb/math/ConjGradient.h>
66 #include <openvdb/tree/LeafManager.h>
67 #include <openvdb/tree/Tree.h>
68 #include <openvdb/util/NullInterrupter.h>
69 #include "Morphology.h" // for erodeActiveValues
70 #include <openvdb/openvdb.h>
71
72
73 namespace openvdb {
74 OPENVDB_USE_VERSION_NAMESPACE
75 namespace OPENVDB_VERSION_NAME {
76 namespace tools {
77 namespace poisson {
78
79 // This type should be at least as wide as math::pcg::SizeType.
80 using VIndex = Int32;
81
82 /// The type of a matrix used to represent a three-dimensional %Laplacian operator
83 using LaplacianMatrix = math::pcg::SparseStencilMatrix<double, 7>;
84
85
86 //@{
87 /// @brief Solve &nabla;<sup><small>2</small></sup><i>x</i> = <i>b</i> for <i>x</i>,
88 /// where @e b is a vector comprising the values of all of the active voxels
89 /// in the input tree.
90 /// @return a new tree, with the same active voxel topology as the input tree,
91 /// whose voxel values are the elements of the solution vector <i>x</i>.
92 /// @details On input, the State object should specify convergence criteria
93 /// (minimum error and maximum number of iterations); on output, it gives
94 /// the actual termination conditions.
95 /// @details The solution is computed using the conjugate gradient method
96 /// with (where possible) incomplete Cholesky preconditioning, falling back
97 /// to Jacobi preconditioning.
98 /// @sa solveWithBoundaryConditions
99 template<typename TreeType>
100 typename TreeType::Ptr
101 solve(const TreeType&, math::pcg::State&, bool staggered = false);
102
103 template<typename TreeType, typename Interrupter>
104 typename TreeType::Ptr
105 solve(const TreeType&, math::pcg::State&, Interrupter&, bool staggered = false);
106 //@}
107
108
109 //@{
110 /// @brief Solve &nabla;<sup><small>2</small></sup><i>x</i> = <i>b</i> for <i>x</i>
111 /// with user-specified boundary conditions, where @e b is a vector comprising
112 /// the values of all of the active voxels in the input tree or domain mask if provided
113 /// @return a new tree, with the same active voxel topology as the input tree,
114 /// whose voxel values are the elements of the solution vector <i>x</i>.
115 /// @details On input, the State object should specify convergence criteria
116 /// (minimum error and maximum number of iterations); on output, it gives
117 /// the actual termination conditions.
118 /// @details The solution is computed using the conjugate gradient method with
119 /// the specified type of preconditioner (default: incomplete Cholesky),
120 /// falling back to Jacobi preconditioning if necessary.
121 /// @details Each thread gets its own copy of the BoundaryOp, which should be
122 /// a functor of the form
123 /// @code
124 /// struct BoundaryOp {
125 /// using ValueType = LaplacianMatrix::ValueType;
126 /// void operator()(
127 /// const Coord& ijk, // coordinates of a boundary voxel
128 /// const Coord& ijkNeighbor, // coordinates of an exterior neighbor of ijk
129 /// ValueType& source, // element of b corresponding to ijk
130 /// ValueType& diagonal // element of Laplacian matrix corresponding to ijk
131 /// ) const;
132 /// };
133 /// @endcode
134 /// The functor is called for each of the exterior neighbors of each boundary voxel @ijk,
135 /// and it must specify a boundary condition for @ijk by modifying one or both of two
136 /// provided values: the entry in the source vector @e b corresponding to @ijk and
137 /// the weighting coefficient for @ijk in the Laplacian operator matrix.
138 ///
139 /// @sa solve
140 template<typename TreeType, typename BoundaryOp, typename Interrupter>
141 typename TreeType::Ptr
142 solveWithBoundaryConditions(
143 const TreeType&,
144 const BoundaryOp&,
145 math::pcg::State&,
146 Interrupter&,
147 bool staggered = false);
148
149 template<
150 typename PreconditionerType,
151 typename TreeType,
152 typename BoundaryOp,
153 typename Interrupter>
154 typename TreeType::Ptr
155 solveWithBoundaryConditionsAndPreconditioner(
156 const TreeType&,
157 const BoundaryOp&,
158 math::pcg::State&,
159 Interrupter&,
160 bool staggered = false);
161
162 template<
163 typename PreconditionerType,
164 typename TreeType,
165 typename DomainTreeType,
166 typename BoundaryOp,
167 typename Interrupter>
168 typename TreeType::Ptr
169 solveWithBoundaryConditionsAndPreconditioner(
170 const TreeType&,
171 const DomainTreeType&,
172 const BoundaryOp&,
173 math::pcg::State&,
174 Interrupter&,
175 bool staggered = false);
176 //@}
177
178
179 /// @name Low-level functions
180 //@{
181 // The following are low-level routines that can be used to assemble custom solvers.
182
183 /// @brief Overwrite each active voxel in the given scalar tree
184 /// with a sequential index, starting from zero.
185 template<typename VIndexTreeType>
186 void populateIndexTree(VIndexTreeType&);
187
188 /// @brief Iterate over the active voxels of the input tree and for each one
189 /// assign its index in the iteration sequence to the corresponding voxel
190 /// of an integer-valued output tree.
191 template<typename TreeType>
192 typename TreeType::template ValueConverter<VIndex>::Type::Ptr
193 createIndexTree(const TreeType&);
194
195
196 /// @brief Return a vector of the active voxel values of the scalar-valued @a source tree.
197 /// @details The <i>n</i>th element of the vector corresponds to the voxel whose value
198 /// in the @a index tree is @e n.
199 /// @param source a tree with a scalar value type
200 /// @param index a tree of the same configuration as @a source but with
201 /// value type VIndex that maps voxels to elements of the output vector
202 template<typename VectorValueType, typename SourceTreeType>
203 typename math::pcg::Vector<VectorValueType>::Ptr
204 createVectorFromTree(
205 const SourceTreeType& source,
206 const typename SourceTreeType::template ValueConverter<VIndex>::Type& index);
207
208
209 /// @brief Return a tree with the same active voxel topology as the @a index tree
210 /// but whose voxel values are taken from the the given vector.
211 /// @details The voxel whose value in the @a index tree is @e n gets assigned
212 /// the <i>n</i>th element of the vector.
213 /// @param index a tree with value type VIndex that maps voxels to elements of @a values
214 /// @param values a vector of values with which to populate the active voxels of the output tree
215 /// @param background the value for the inactive voxels of the output tree
216 template<typename TreeValueType, typename VIndexTreeType, typename VectorValueType>
217 typename VIndexTreeType::template ValueConverter<TreeValueType>::Type::Ptr
218 createTreeFromVector(
219 const math::pcg::Vector<VectorValueType>& values,
220 const VIndexTreeType& index,
221 const TreeValueType& background);
222
223
224 /// @brief Generate a sparse matrix of the index-space (&Delta;<i>x</i> = 1) %Laplacian operator
225 /// using second-order finite differences.
226 /// @details This construction assumes homogeneous Dirichlet boundary conditions
227 /// (exterior grid points are zero).
228 template<typename BoolTreeType>
229 LaplacianMatrix::Ptr
230 createISLaplacian(
231 const typename BoolTreeType::template ValueConverter<VIndex>::Type& vectorIndexTree,
232 const BoolTreeType& interiorMask,
233 bool staggered = false);
234
235
236 /// @brief Generate a sparse matrix of the index-space (&Delta;<i>x</i> = 1) %Laplacian operator
237 /// with user-specified boundary conditions using second-order finite differences.
238 /// @details Each thread gets its own copy of @a boundaryOp, which should be
239 /// a functor of the form
240 /// @code
241 /// struct BoundaryOp {
242 /// using ValueType = LaplacianMatrix::ValueType;
243 /// void operator()(
244 /// const Coord& ijk, // coordinates of a boundary voxel
245 /// const Coord& ijkNeighbor, // coordinates of an exterior neighbor of ijk
246 /// ValueType& source, // element of source vector corresponding to ijk
247 /// ValueType& diagonal // element of Laplacian matrix corresponding to ijk
248 /// ) const;
249 /// };
250 /// @endcode
251 /// The functor is called for each of the exterior neighbors of each boundary voxel @ijk,
252 /// and it must specify a boundary condition for @ijk by modifying one or both of two
253 /// provided values: an entry in the given @a source vector corresponding to @ijk and
254 /// the weighting coefficient for @ijk in the %Laplacian matrix.
255 template<typename BoolTreeType, typename BoundaryOp>
256 LaplacianMatrix::Ptr
257 createISLaplacianWithBoundaryConditions(
258 const typename BoolTreeType::template ValueConverter<VIndex>::Type& vectorIndexTree,
259 const BoolTreeType& interiorMask,
260 const BoundaryOp& boundaryOp,
261 typename math::pcg::Vector<LaplacianMatrix::ValueType>& source,
262 bool staggered = false);
263
264
265 /// @brief Dirichlet boundary condition functor
266 /// @details This is useful in describing fluid/air interfaces, where the pressure
267 /// of the air is assumed to be zero.
268 template<typename ValueType>
269 struct DirichletBoundaryOp {
270 inline void operator()(const Coord&, const Coord&, ValueType&, ValueType& diag) const {
271 // Exterior neighbors are empty, so decrement the weighting coefficient
272 // as for interior neighbors but leave the source vector unchanged.
273 2460 diag -= 1;
274 60156 }
275 };
276
277 //@}
278
279
280 ////////////////////////////////////////
281
282 /// @cond OPENVDB_DOCS_INTERNAL
283
284 namespace internal {
285
286 /// @brief Functor for use with LeafManager::foreach() to populate an array
287 /// with per-leaf active voxel counts
288 template<typename LeafType>
289 struct LeafCountOp
290 {
291 VIndex* count;
292 10 LeafCountOp(VIndex* count_): count(count_) {}
293 void operator()(const LeafType& leaf, size_t leafIdx) const {
294 9306 count[leafIdx] = static_cast<VIndex>(leaf.onVoxelCount());
295 }
296 };
297
298
299 /// @brief Functor for use with LeafManager::foreach() to populate
300 /// active leaf voxels with sequential indices
301 template<typename LeafType>
302 struct LeafIndexOp
303 {
304 const VIndex* count;
305 10 LeafIndexOp(const VIndex* count_): count(count_) {}
306 9306 void operator()(LeafType& leaf, size_t leafIdx) const {
307
2/2
✓ Branch 0 taken 9296 times.
✓ Branch 1 taken 10 times.
9306 VIndex idx = (leafIdx == 0) ? 0 : count[leafIdx - 1];
308
2/2
✓ Branch 0 taken 3852431 times.
✓ Branch 1 taken 9306 times.
3861737 for (typename LeafType::ValueOnIter it = leaf.beginValueOn(); it; ++it) {
309 3852431 it.setValue(idx++);
310 }
311 9306 }
312 };
313
314 } // namespace internal
315
316 /// @endcond
317
318 template<typename VIndexTreeType>
319 inline void
320 10 populateIndexTree(VIndexTreeType& result)
321 {
322 using LeafT = typename VIndexTreeType::LeafNodeType;
323 using LeafMgrT = typename tree::LeafManager<VIndexTreeType>;
324
325 // Linearize the tree.
326 20 LeafMgrT leafManager(result);
327 const size_t leafCount = leafManager.leafCount();
328
329
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
10 if (leafCount == 0) return;
330
331 // Count the number of active voxels in each leaf node.
332
2/4
✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
✓ Branch 3 taken 10 times.
✗ Branch 4 not taken.
10 std::unique_ptr<VIndex[]> perLeafCount(new VIndex[leafCount]);
333 VIndex* perLeafCountPtr = perLeafCount.get();
334
1/2
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
10 leafManager.foreach(internal::LeafCountOp<LeafT>(perLeafCountPtr));
335
336 // The starting index for each leaf node is the total number
337 // of active voxels in all preceding leaf nodes.
338
2/2
✓ Branch 0 taken 9296 times.
✓ Branch 1 taken 10 times.
9306 for (size_t i = 1; i < leafCount; ++i) {
339 9296 perLeafCount[i] += perLeafCount[i - 1];
340 }
341
342 // The last accumulated value should be the total of all active voxels.
343
2/4
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 10 times.
10 assert(Index64(perLeafCount[leafCount-1]) == result.activeVoxelCount());
344
345 // Parallelize over the leaf nodes of the tree, storing a unique index
346 // in each active voxel.
347
2/6
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 10 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
10 leafManager.foreach(internal::LeafIndexOp<LeafT>(perLeafCountPtr));
348 }
349
350
351 template<typename TreeType>
352 inline typename TreeType::template ValueConverter<VIndex>::Type::Ptr
353 20 createIndexTree(const TreeType& tree)
354 {
355 using VIdxTreeT = typename TreeType::template ValueConverter<VIndex>::Type;
356
357 // Construct an output tree with the same active voxel topology as the input tree.
358 20 const VIndex invalidIdx = -1;
359
1/2
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
20 typename VIdxTreeT::Ptr result(
360
2/4
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 10 times.
✗ Branch 5 not taken.
20 new VIdxTreeT(tree, /*background=*/invalidIdx, TopologyCopy()));
361
362 // All active voxels are degrees of freedom, including voxels contained in active tiles.
363 result->voxelizeActiveTiles();
364
365
1/2
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
20 populateIndexTree(*result);
366
367 20 return result;
368 }
369
370
371 ////////////////////////////////////////
372
373 /// @cond OPENVDB_DOCS_INTERNAL
374
375 namespace internal {
376
377 /// @brief Functor for use with LeafManager::foreach() to populate a vector
378 /// with the values of a tree's active voxels
379 template<typename VectorValueType, typename SourceTreeType>
380 struct CopyToVecOp
381 {
382 using VIdxTreeT = typename SourceTreeType::template ValueConverter<VIndex>::Type;
383 using VIdxLeafT = typename VIdxTreeT::LeafNodeType;
384 using LeafT = typename SourceTreeType::LeafNodeType;
385 using TreeValueT = typename SourceTreeType::ValueType;
386 using VectorT = typename math::pcg::Vector<VectorValueType>;
387
388 const SourceTreeType* tree;
389 VectorT* vector;
390
391 10 CopyToVecOp(const SourceTreeType& t, VectorT& v): tree(&t), vector(&v) {}
392
393 18612 void operator()(const VIdxLeafT& idxLeaf, size_t /*leafIdx*/) const
394 {
395 18612 VectorT& vec = *vector;
396
2/2
✓ Branch 1 taken 8705 times.
✓ Branch 2 taken 601 times.
18612 if (const LeafT* leaf = tree->probeLeaf(idxLeaf.origin())) {
397 // If a corresponding leaf node exists in the source tree,
398 // copy voxel values from the source node to the output vector.
399
2/2
✓ Branch 0 taken 3552399 times.
✓ Branch 1 taken 8705 times.
7122208 for (typename VIdxLeafT::ValueOnCIter it = idxLeaf.cbeginValueOn(); it; ++it) {
400 11637664 vec[*it] = leaf->getValue(it.pos());
401 }
402 } else {
403 // If no corresponding leaf exists in the source tree,
404 // fill the vector with a uniform value.
405 1202 const TreeValueT& value = tree->getValue(idxLeaf.origin());
406
2/2
✓ Branch 0 taken 300032 times.
✓ Branch 1 taken 601 times.
601266 for (typename VIdxLeafT::ValueOnCIter it = idxLeaf.cbeginValueOn(); it; ++it) {
407 600064 vec[*it] = value;
408 }
409 }
410 18612 }
411 };
412
413 } // namespace internal
414
415 /// @endcond
416
417 template<typename VectorValueType, typename SourceTreeType>
418 inline typename math::pcg::Vector<VectorValueType>::Ptr
419 20 createVectorFromTree(const SourceTreeType& tree,
420 const typename SourceTreeType::template ValueConverter<VIndex>::Type& idxTree)
421 {
422 using VIdxTreeT = typename SourceTreeType::template ValueConverter<VIndex>::Type;
423 using VIdxLeafMgrT = tree::LeafManager<const VIdxTreeT>;
424 using VectorT = typename math::pcg::Vector<VectorValueType>;
425
426 // Allocate the vector.
427 20 const size_t numVoxels = idxTree.activeVoxelCount();
428
1/2
✓ Branch 2 taken 10 times.
✗ Branch 3 not taken.
20 typename VectorT::Ptr result(new VectorT(static_cast<math::pcg::SizeType>(numVoxels)));
429
430 // Parallelize over the leaf nodes of the index tree, filling the output vector
431 // with values from corresponding voxels of the source tree.
432
1/2
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
20 VIdxLeafMgrT leafManager(idxTree);
433
1/2
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
20 leafManager.foreach(internal::CopyToVecOp<VectorValueType, SourceTreeType>(tree, *result));
434
435 20 return result;
436 }
437
438
439 ////////////////////////////////////////
440
441 /// @cond OPENVDB_DOCS_INTERNAL
442
443 namespace internal {
444
445 /// @brief Functor for use with LeafManager::foreach() to populate a tree
446 /// with values from a vector
447 template<typename TreeValueType, typename VIndexTreeType, typename VectorValueType>
448 struct CopyFromVecOp
449 {
450 using OutTreeT = typename VIndexTreeType::template ValueConverter<TreeValueType>::Type;
451 using OutLeafT = typename OutTreeT::LeafNodeType;
452 using VIdxLeafT = typename VIndexTreeType::LeafNodeType;
453 using VectorT = typename math::pcg::Vector<VectorValueType>;
454
455 const VectorT* vector;
456 OutTreeT* tree;
457
458 8 CopyFromVecOp(const VectorT& v, OutTreeT& t): vector(&v), tree(&t) {}
459
460 18556 void operator()(const VIdxLeafT& idxLeaf, size_t /*leafIdx*/) const
461 {
462 18556 const VectorT& vec = *vector;
463 18556 OutLeafT* leaf = tree->probeLeaf(idxLeaf.origin());
464
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 9278 times.
18556 assert(leaf != nullptr);
465
2/2
✓ Branch 0 taken 3845229 times.
✓ Branch 1 taken 9278 times.
7709014 for (typename VIdxLeafT::ValueOnCIter it = idxLeaf.cbeginValueOn(); it; ++it) {
466 7690458 leaf->setValueOnly(it.pos(), static_cast<TreeValueType>(vec[*it]));
467 }
468 18556 }
469 };
470
471 } // namespace internal
472
473 /// @endcond
474
475 template<typename TreeValueType, typename VIndexTreeType, typename VectorValueType>
476 inline typename VIndexTreeType::template ValueConverter<TreeValueType>::Type::Ptr
477 16 createTreeFromVector(
478 const math::pcg::Vector<VectorValueType>& vector,
479 const VIndexTreeType& idxTree,
480 const TreeValueType& background)
481 {
482 using OutTreeT = typename VIndexTreeType::template ValueConverter<TreeValueType>::Type;
483 using VIdxLeafMgrT = typename tree::LeafManager<const VIndexTreeType>;
484
485 // Construct an output tree with the same active voxel topology as the index tree.
486
3/6
✓ Branch 1 taken 8 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 8 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 8 times.
✗ Branch 8 not taken.
32 typename OutTreeT::Ptr result(new OutTreeT(idxTree, background, TopologyCopy()));
487 OutTreeT& tree = *result;
488
489 // Parallelize over the leaf nodes of the index tree, populating voxels
490 // of the output tree with values from the input vector.
491
1/2
✓ Branch 1 taken 8 times.
✗ Branch 2 not taken.
16 VIdxLeafMgrT leafManager(idxTree);
492
1/2
✓ Branch 1 taken 8 times.
✗ Branch 2 not taken.
16 leafManager.foreach(
493 internal::CopyFromVecOp<TreeValueType, VIndexTreeType, VectorValueType>(vector, tree));
494
495 16 return result;
496 }
497
498
499 ////////////////////////////////////////
500
501 /// @cond OPENVDB_DOCS_INTERNAL
502
503 namespace internal {
504
505 /// Functor for use with LeafManager::foreach() to populate a sparse %Laplacian matrix
506 template<typename BoolTreeType, typename BoundaryOp>
507
1/2
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
4 struct ISStaggeredLaplacianOp
508 {
509 using VIdxTreeT = typename BoolTreeType::template ValueConverter<VIndex>::Type;
510 using VIdxLeafT = typename VIdxTreeT::LeafNodeType;
511 using ValueT = LaplacianMatrix::ValueType;
512 using VectorT = typename math::pcg::Vector<ValueT>;
513
514 LaplacianMatrix* laplacian;
515 const VIdxTreeT* idxTree;
516 const BoolTreeType* interiorMask;
517 const BoundaryOp boundaryOp;
518 VectorT* source;
519
520 8 ISStaggeredLaplacianOp(LaplacianMatrix& m, const VIdxTreeT& idx,
521 const BoolTreeType& mask, const BoundaryOp& op, VectorT& src):
522
1/2
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
4 laplacian(&m), idxTree(&idx), interiorMask(&mask), boundaryOp(op), source(&src) {}
523
524 15792 void operator()(const VIdxLeafT& idxLeaf, size_t /*leafIdx*/) const
525 {
526 // Local accessors
527 15792 typename tree::ValueAccessor<const BoolTreeType> interior(*interiorMask);
528
1/2
✓ Branch 1 taken 7896 times.
✗ Branch 2 not taken.
15792 typename tree::ValueAccessor<const VIdxTreeT> vectorIdx(*idxTree);
529
530 Coord ijk;
531 VIndex column;
532 15792 const ValueT diagonal = -6.f, offDiagonal = 1.f;
533
534 // Loop over active voxels in this leaf.
535
2/2
✓ Branch 0 taken 3316969 times.
✓ Branch 1 taken 7896 times.
6649730 for (typename VIdxLeafT::ValueOnCIter it = idxLeaf.cbeginValueOn(); it; ++it) {
536
2/4
✓ Branch 1 taken 3316969 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 3316969 times.
6633938 assert(it.getValue() > -1);
537
1/2
✓ Branch 1 taken 3316969 times.
✗ Branch 2 not taken.
6633938 const math::pcg::SizeType rowNum = static_cast<math::pcg::SizeType>(it.getValue());
538
539 6633938 LaplacianMatrix::RowEditor row = laplacian->getRowEditor(rowNum);
540
541
1/2
✓ Branch 1 taken 3316969 times.
✗ Branch 2 not taken.
6633938 ijk = it.getCoord();
542
2/2
✓ Branch 1 taken 3148529 times.
✓ Branch 2 taken 168440 times.
6633938 if (interior.isValueOn(ijk)) {
543 // The current voxel is an interior voxel.
544 // All of its neighbors are in the solution domain.
545
546 // -x direction
547
2/4
✓ Branch 1 taken 3148529 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 3148529 times.
✗ Branch 6 not taken.
6297058 row.setValue(vectorIdx.getValue(ijk.offsetBy(-1, 0, 0)), offDiagonal);
548 // -y direction
549
2/4
✓ Branch 1 taken 3148529 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 3148529 times.
✗ Branch 6 not taken.
6297058 row.setValue(vectorIdx.getValue(ijk.offsetBy(0, -1, 0)), offDiagonal);
550 // -z direction
551
1/2
✓ Branch 1 taken 3148529 times.
✗ Branch 2 not taken.
6297058 row.setValue(vectorIdx.getValue(ijk.offsetBy(0, 0, -1)), offDiagonal);
552 // diagonal
553 6297058 row.setValue(rowNum, diagonal);
554 // +z direction
555
2/4
✓ Branch 1 taken 3148529 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 3148529 times.
✗ Branch 6 not taken.
6297058 row.setValue(vectorIdx.getValue(ijk.offsetBy(0, 0, 1)), offDiagonal);
556 // +y direction
557
2/4
✓ Branch 1 taken 3148529 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 3148529 times.
✗ Branch 6 not taken.
6297058 row.setValue(vectorIdx.getValue(ijk.offsetBy(0, 1, 0)), offDiagonal);
558 // +x direction
559
1/2
✓ Branch 1 taken 3148529 times.
✗ Branch 2 not taken.
6297058 row.setValue(vectorIdx.getValue(ijk.offsetBy(1, 0, 0)), offDiagonal);
560
561 } else {
562 // The current voxel is a boundary voxel.
563 // At least one of its neighbors is outside the solution domain.
564
565
1/2
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
336880 ValueT modifiedDiagonal = 0.f;
566
567 // -x direction
568
3/4
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 131537 times.
✓ Branch 4 taken 36903 times.
336880 if (vectorIdx.probeValue(ijk.offsetBy(-1, 0, 0), column)) {
569 263074 row.setValue(column, offDiagonal);
570 263074 modifiedDiagonal -= 1;
571 } else {
572
1/2
✓ Branch 1 taken 36293 times.
✗ Branch 2 not taken.
72586 boundaryOp(ijk, ijk.offsetBy(-1, 0, 0), source->at(rowNum), modifiedDiagonal);
573 }
574 // -y direction
575
3/4
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 131537 times.
✓ Branch 4 taken 36903 times.
336880 if (vectorIdx.probeValue(ijk.offsetBy(0, -1, 0), column)) {
576 263074 row.setValue(column, offDiagonal);
577 263074 modifiedDiagonal -= 1;
578 } else {
579
1/2
✓ Branch 1 taken 36293 times.
✗ Branch 2 not taken.
72986 boundaryOp(ijk, ijk.offsetBy(0, -1, 0), source->at(rowNum), modifiedDiagonal);
580 }
581 // -z direction
582
3/4
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 131072 times.
✓ Branch 4 taken 37368 times.
336880 if (vectorIdx.probeValue(ijk.offsetBy(0, 0, -1), column)) {
583 262144 row.setValue(column, offDiagonal);
584 262144 modifiedDiagonal -= 1;
585 } else {
586
1/2
✓ Branch 1 taken 36758 times.
✗ Branch 2 not taken.
73516 boundaryOp(ijk, ijk.offsetBy(0, 0, -1), source->at(rowNum), modifiedDiagonal);
587 }
588 // +z direction
589
3/4
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 131072 times.
✓ Branch 4 taken 37368 times.
336880 if (vectorIdx.probeValue(ijk.offsetBy(0, 0, 1), column)) {
590 262144 row.setValue(column, offDiagonal);
591 262144 modifiedDiagonal -= 1;
592 } else {
593
1/2
✓ Branch 1 taken 36758 times.
✗ Branch 2 not taken.
73516 boundaryOp(ijk, ijk.offsetBy(0, 0, 1), source->at(rowNum), modifiedDiagonal);
594 }
595 // +y direction
596
3/4
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 131537 times.
✓ Branch 4 taken 36903 times.
336880 if (vectorIdx.probeValue(ijk.offsetBy(0, 1, 0), column)) {
597 263074 row.setValue(column, offDiagonal);
598 263074 modifiedDiagonal -= 1;
599 } else {
600
1/2
✓ Branch 1 taken 36293 times.
✗ Branch 2 not taken.
72586 boundaryOp(ijk, ijk.offsetBy(0, 1, 0), source->at(rowNum), modifiedDiagonal);
601 }
602 // +x direction
603
3/6
✓ Branch 1 taken 168440 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 131537 times.
✓ Branch 4 taken 36903 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
336880 if (vectorIdx.probeValue(ijk.offsetBy(1, 0, 0), column)) {
604 263074 row.setValue(column, offDiagonal);
605 263074 modifiedDiagonal -= 1;
606 } else {
607
1/4
✓ Branch 1 taken 36293 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
72586 boundaryOp(ijk, ijk.offsetBy(1, 0, 0), source->at(rowNum), modifiedDiagonal);
608 }
609 // diagonal
610 336880 row.setValue(rowNum, modifiedDiagonal);
611 }
612 } // end loop over voxels
613 15792 }
614 };
615
616
617 // Stencil 1 is the correct stencil, but stencil 2 requires
618 // half as many comparisons and produces smoother results at boundaries.
619 //#define OPENVDB_TOOLS_POISSON_LAPLACIAN_STENCIL 1
620 #define OPENVDB_TOOLS_POISSON_LAPLACIAN_STENCIL 2
621
622 /// Functor for use with LeafManager::foreach() to populate a sparse %Laplacian matrix
623 template<typename VIdxTreeT, typename BoundaryOp>
624 struct ISLaplacianOp
625 {
626 using VIdxLeafT = typename VIdxTreeT::LeafNodeType;
627 using ValueT = LaplacianMatrix::ValueType;
628 using VectorT = typename math::pcg::Vector<ValueT>;
629
630 LaplacianMatrix* laplacian;
631 const VIdxTreeT* idxTree;
632 const BoundaryOp boundaryOp;
633 VectorT* source;
634
635 1 ISLaplacianOp(LaplacianMatrix& m, const VIdxTreeT& idx, const BoundaryOp& op, VectorT& src):
636 laplacian(&m), idxTree(&idx), boundaryOp(op), source(&src) {}
637
638 1410 void operator()(const VIdxLeafT& idxLeaf, size_t /*leafIdx*/) const
639 {
640 1410 typename tree::ValueAccessor<const VIdxTreeT> vectorIdx(*idxTree);
641
642 const int kNumOffsets = 6;
643 const Coord ijkOffset[kNumOffsets] = {
644 #if OPENVDB_TOOLS_POISSON_LAPLACIAN_STENCIL == 1
645 Coord(-1,0,0), Coord(1,0,0), Coord(0,-1,0), Coord(0,1,0), Coord(0,0,-1), Coord(0,0,1)
646 #else
647 Coord(-2,0,0), Coord(2,0,0), Coord(0,-2,0), Coord(0,2,0), Coord(0,0,-2), Coord(0,0,2)
648 #endif
649 };
650
651 // For each active voxel in this leaf...
652
2/2
✓ Branch 0 taken 267731 times.
✓ Branch 1 taken 705 times.
536872 for (typename VIdxLeafT::ValueOnCIter it = idxLeaf.cbeginValueOn(); it; ++it) {
653
2/4
✓ Branch 1 taken 267731 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 267731 times.
535462 assert(it.getValue() > -1);
654
655
1/2
✓ Branch 1 taken 267731 times.
✗ Branch 2 not taken.
535462 const Coord ijk = it.getCoord();
656
1/2
✓ Branch 1 taken 267731 times.
✗ Branch 2 not taken.
535462 const math::pcg::SizeType rowNum = static_cast<math::pcg::SizeType>(it.getValue());
657
658 535462 LaplacianMatrix::RowEditor row = laplacian->getRowEditor(rowNum);
659
660 535462 ValueT modifiedDiagonal = 0.f;
661
662 // For each of the neighbors of the voxel at (i,j,k)...
663
2/2
✓ Branch 0 taken 1606386 times.
✓ Branch 1 taken 267731 times.
3748234 for (int dir = 0; dir < kNumOffsets; ++dir) {
664
1/2
✓ Branch 1 taken 1606386 times.
✗ Branch 2 not taken.
3212772 const Coord neighbor = ijk + ijkOffset[dir];
665 VIndex column;
666 // For collocated vector grids, the central differencing stencil requires
667 // access to neighbors at a distance of two voxels in each direction
668 // (-x, +x, -y, +y, -z, +z).
669 #if OPENVDB_TOOLS_POISSON_LAPLACIAN_STENCIL == 1
670 const bool ijkIsInterior = (vectorIdx.probeValue(neighbor + ijkOffset[dir], column)
671 && vectorIdx.isValueOn(neighbor));
672 #else
673
1/2
✓ Branch 1 taken 1606386 times.
✗ Branch 2 not taken.
3212772 const bool ijkIsInterior = vectorIdx.probeValue(neighbor, column);
674 #endif
675
2/2
✓ Branch 0 taken 1546230 times.
✓ Branch 1 taken 60156 times.
3212772 if (ijkIsInterior) {
676 // If (i,j,k) is sufficiently far away from the exterior,
677 // set its weight to one and adjust the center weight accordingly.
678 3092460 row.setValue(column, 1.f);
679 3092460 modifiedDiagonal -= 1.f;
680 } else {
681 // If (i,j,k) is adjacent to or one voxel away from the exterior,
682 // invoke the boundary condition functor.
683 boundaryOp(ijk, neighbor, source->at(rowNum), modifiedDiagonal);
684 }
685 }
686 // Set the (possibly modified) weight for the voxel at (i,j,k).
687 535462 row.setValue(rowNum, modifiedDiagonal);
688 }
689 }
690 };
691
692 } // namespace internal
693
694 /// @endcond
695
696
697 template<typename BoolTreeType>
698 inline LaplacianMatrix::Ptr
699 2 createISLaplacian(const typename BoolTreeType::template ValueConverter<VIndex>::Type& idxTree,
700 const BoolTreeType& interiorMask, bool staggered)
701 {
702 using ValueT = LaplacianMatrix::ValueType;
703 2 math::pcg::Vector<ValueT> unused(
704 2 static_cast<math::pcg::SizeType>(idxTree.activeVoxelCount()));
705 DirichletBoundaryOp<ValueT> op;
706
1/2
✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
4 return createISLaplacianWithBoundaryConditions(idxTree, interiorMask, op, unused, staggered);
707 }
708
709
710 template<typename BoolTreeType, typename BoundaryOp>
711 inline LaplacianMatrix::Ptr
712 18 createISLaplacianWithBoundaryConditions(
713 const typename BoolTreeType::template ValueConverter<VIndex>::Type& idxTree,
714 const BoolTreeType& interiorMask,
715 const BoundaryOp& boundaryOp,
716 typename math::pcg::Vector<LaplacianMatrix::ValueType>& source,
717 bool staggered)
718 {
719 using VIdxTreeT = typename BoolTreeType::template ValueConverter<VIndex>::Type;
720 using VIdxLeafMgrT = typename tree::LeafManager<const VIdxTreeT>;
721
722 // The number of active voxels is the number of degrees of freedom.
723 18 const Index64 numDoF = idxTree.activeVoxelCount();
724
725 // Construct the matrix.
726 LaplacianMatrix::Ptr laplacianPtr(
727
1/2
✓ Branch 2 taken 9 times.
✗ Branch 3 not taken.
18 new LaplacianMatrix(static_cast<math::pcg::SizeType>(numDoF)));
728 LaplacianMatrix& laplacian = *laplacianPtr;
729
730 // Populate the matrix using a second-order, 7-point CD stencil.
731
1/2
✓ Branch 1 taken 9 times.
✗ Branch 2 not taken.
36 VIdxLeafMgrT idxLeafManager(idxTree);
732
2/2
✓ Branch 0 taken 8 times.
✓ Branch 1 taken 1 times.
18 if (staggered) {
733
1/2
✓ Branch 1 taken 8 times.
✗ Branch 2 not taken.
16 idxLeafManager.foreach(internal::ISStaggeredLaplacianOp<BoolTreeType, BoundaryOp>(
734 laplacian, idxTree, interiorMask, boundaryOp, source));
735 } else {
736
1/2
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
2 idxLeafManager.foreach(internal::ISLaplacianOp<VIdxTreeT, BoundaryOp>(
737 laplacian, idxTree, boundaryOp, source));
738 }
739
740 18 return laplacianPtr;
741 }
742
743
744 ////////////////////////////////////////
745
746
747 template<typename TreeType>
748 typename TreeType::Ptr
749 1 solve(const TreeType& inTree, math::pcg::State& state, bool staggered)
750 {
751 1 util::NullInterrupter interrupter;
752 1 return solve(inTree, state, interrupter, staggered);
753 }
754
755
756 template<typename TreeType, typename Interrupter>
757 typename TreeType::Ptr
758 1 solve(const TreeType& inTree, math::pcg::State& state, Interrupter& interrupter, bool staggered)
759 {
760 DirichletBoundaryOp<LaplacianMatrix::ValueType> boundaryOp;
761 1 return solveWithBoundaryConditions(inTree, boundaryOp, state, interrupter, staggered);
762 }
763
764
765 template<typename TreeType, typename BoundaryOp, typename Interrupter>
766 typename TreeType::Ptr
767 12 solveWithBoundaryConditions(const TreeType& inTree, const BoundaryOp& boundaryOp,
768 math::pcg::State& state, Interrupter& interrupter, bool staggered)
769 {
770 using DefaultPrecondT = math::pcg::IncompleteCholeskyPreconditioner<LaplacianMatrix>;
771 return solveWithBoundaryConditionsAndPreconditioner<DefaultPrecondT>(
772 12 inTree, boundaryOp, state, interrupter, staggered);
773 }
774
775
776 template<
777 typename PreconditionerType,
778 typename TreeType,
779 typename BoundaryOp,
780 typename Interrupter>
781 typename TreeType::Ptr
782 12 solveWithBoundaryConditionsAndPreconditioner(
783 const TreeType& inTree,
784 const BoundaryOp& boundaryOp,
785 math::pcg::State& state,
786 Interrupter& interrupter,
787 bool staggered)
788 {
789 return solveWithBoundaryConditionsAndPreconditioner<PreconditionerType>(
790 12 /*source=*/inTree, /*domain mask=*/inTree, boundaryOp, state, interrupter, staggered);
791 }
792
793 template<
794 typename PreconditionerType,
795 typename TreeType,
796 typename DomainTreeType,
797 typename BoundaryOp,
798 typename Interrupter>
799 typename TreeType::Ptr
800 7 solveWithBoundaryConditionsAndPreconditioner(
801 const TreeType& inTree,
802 const DomainTreeType& domainMask,
803 const BoundaryOp& boundaryOp,
804 math::pcg::State& state,
805 Interrupter& interrupter,
806 bool staggered)
807 {
808 using TreeValueT = typename TreeType::ValueType;
809 using VecValueT = LaplacianMatrix::ValueType;
810 using VectorT = typename math::pcg::Vector<VecValueT>;
811 using VIdxTreeT = typename TreeType::template ValueConverter<VIndex>::Type;
812 using MaskTreeT = typename TreeType::template ValueConverter<bool>::Type;
813
814 // 1. Create a mapping from active voxels of the input tree to elements of a vector.
815 7 typename VIdxTreeT::ConstPtr idxTree = createIndexTree(domainMask);
816
817 // 2. Populate a vector with values from the input tree.
818 7 typename VectorT::Ptr b = createVectorFromTree<VecValueT>(inTree, *idxTree);
819
820 // 3. Create a mask of the interior voxels of the input tree (from the densified index tree).
821 /// @todo Is this really needed?
822 7 typename MaskTreeT::Ptr interiorMask(
823 7 new MaskTreeT(*idxTree, /*background=*/false, TopologyCopy()));
824 7 tools::erodeActiveValues(*interiorMask, /*iterations=*/1, tools::NN_FACE, tools::IGNORE_TILES);
825
826 // 4. Create the Laplacian matrix.
827 7 LaplacianMatrix::Ptr laplacian = createISLaplacianWithBoundaryConditions(
828 *idxTree, *interiorMask, boundaryOp, *b, staggered);
829
830 // 5. Solve the Poisson equation.
831 laplacian->scale(-1.0); // matrix is negative-definite; solve -M x = -b
832 b->scale(-1.0);
833 14 typename VectorT::Ptr x(new VectorT(b->size(), zeroVal<VecValueT>()));
834 typename math::pcg::Preconditioner<VecValueT>::Ptr precond(
835 7 new PreconditionerType(*laplacian));
836 7 if (!precond->isValid()) {
837 precond.reset(new math::pcg::JacobiPreconditioner<LaplacianMatrix>(*laplacian));
838 }
839
840 7 state = math::pcg::solve(*laplacian, *b, *x, *precond, interrupter, state);
841
842 // 6. Populate the output tree with values from the solution vector.
843 /// @todo if (state.success) ... ?
844 14 return createTreeFromVector<TreeValueT>(*x, *idxTree, /*background=*/zeroVal<TreeValueT>());
845 }
846
847
848 ////////////////////////////////////////
849
850
851 // Explicit Template Instantiation
852
853 #ifdef OPENVDB_USE_EXPLICIT_INSTANTIATION
854
855 #ifdef OPENVDB_INSTANTIATE_POISSONSOLVER
856 #include <openvdb/util/ExplicitInstantiation.h>
857 #endif
858
859 #define _FUNCTION(TreeT) \
860 TreeT::Ptr solveWithBoundaryConditionsAndPreconditioner< \
861 math::pcg::IncompleteCholeskyPreconditioner<LaplacianMatrix>>( \
862 const TreeT&, const TreeT&, const DirichletBoundaryOp<LaplacianMatrix::ValueType>&, \
863 math::pcg::State&, util::NullInterrupter&, bool)
864 OPENVDB_REAL_TREE_INSTANTIATE(_FUNCTION)
865 #undef _FUNCTION
866
867 #define _FUNCTION(TreeT) \
868 TreeT::Ptr solveWithBoundaryConditionsAndPreconditioner< \
869 math::pcg::IncompleteCholeskyPreconditioner<LaplacianMatrix>>( \
870 const TreeT&, const BoolTree&, const DirichletBoundaryOp<LaplacianMatrix::ValueType>&, \
871 math::pcg::State&, util::NullInterrupter&, bool)
872 OPENVDB_REAL_TREE_INSTANTIATE(_FUNCTION)
873 #undef _FUNCTION
874
875 #define _FUNCTION(TreeT) \
876 TreeT::Ptr solveWithBoundaryConditionsAndPreconditioner< \
877 math::pcg::JacobiPreconditioner<LaplacianMatrix>>( \
878 const TreeT&, const TreeT&, const DirichletBoundaryOp<LaplacianMatrix::ValueType>&, \
879 math::pcg::State&, util::NullInterrupter&, bool)
880 OPENVDB_REAL_TREE_INSTANTIATE(_FUNCTION)
881 #undef _FUNCTION
882
883 #define _FUNCTION(TreeT) \
884 TreeT::Ptr solveWithBoundaryConditionsAndPreconditioner< \
885 math::pcg::JacobiPreconditioner<LaplacianMatrix>>( \
886 const TreeT&, const BoolTree&, const DirichletBoundaryOp<LaplacianMatrix::ValueType>&, \
887 math::pcg::State&, util::NullInterrupter&, bool)
888 OPENVDB_REAL_TREE_INSTANTIATE(_FUNCTION)
889 #undef _FUNCTION
890
891 #endif // OPENVDB_USE_EXPLICIT_INSTANTIATION
892
893
894 } // namespace poisson
895 } // namespace tools
896 } // namespace OPENVDB_VERSION_NAME
897 } // namespace openvdb
898
899 #endif // OPENVDB_TOOLS_POISSONSOLVER_HAS_BEEN_INCLUDED
900