OpenVDB  6.2.0
Ray.h
Go to the documentation of this file.
1 //
3 // Copyright (c) DreamWorks Animation LLC
4 //
5 // All rights reserved. This software is distributed under the
6 // Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
7 //
8 // Redistributions of source code must retain the above copyright
9 // and license notice and the following restrictions and disclaimer.
10 //
11 // * Neither the name of DreamWorks Animation nor the names of
12 // its contributors may be used to endorse or promote products derived
13 // from this software without specific prior written permission.
14 //
15 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
20 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 // IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
27 // LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
28 //
30 //
36 
37 #ifndef OPENVDB_MATH_RAY_HAS_BEEN_INCLUDED
38 #define OPENVDB_MATH_RAY_HAS_BEEN_INCLUDED
39 
40 #include "Math.h"
41 #include "Vec3.h"
42 #include "Transform.h"
43 #include <algorithm> // for std::swap()
44 #include <iostream> // for std::ostream
45 #include <limits> // for std::numeric_limits<Type>::max()
46 
47 namespace openvdb {
49 namespace OPENVDB_VERSION_NAME {
50 namespace math {
51 
52 template<typename RealT = double>
53 class Ray
54 {
55 public:
56  static_assert(std::is_floating_point<RealT>::value,
57  "math::Ray requires a floating-point value type");
58 
59  using RealType = RealT;
61  using Vec3T = Vec3Type;
62 
63  struct TimeSpan {
64  RealT t0, t1;
66  TimeSpan() {}
68  TimeSpan(RealT _t0, RealT _t1) : t0(_t0), t1(_t1) {}
70  inline void set(RealT _t0, RealT _t1) { t0=_t0; t1=_t1; }
72  inline void get(RealT& _t0, RealT& _t1) const { _t0=t0; _t1=t1; }
74  inline bool valid(RealT eps=math::Delta<RealT>::value()) const { return (t1-t0)>eps; }
76  inline RealT mid() const { return 0.5*(t0 + t1); }
78  inline void scale(RealT s) {assert(s>0); t0*=s; t1*=s; }
80  inline bool test(RealT t) const { return (t>=t0 && t<=t1); }
81  };
82 
83  Ray(const Vec3Type& eye = Vec3Type(0,0,0),
84  const Vec3Type& direction = Vec3Type(1,0,0),
85  RealT t0 = math::Delta<RealT>::value(),
87  : mEye(eye), mDir(direction), mInvDir(1/mDir), mTimeSpan(t0, t1)
88  {
89  }
90 
91  inline void setEye(const Vec3Type& eye) { mEye = eye; }
92 
93  inline void setDir(const Vec3Type& dir)
94  {
95  mDir = dir;
96  mInvDir = 1/mDir;
97  }
98 
99  inline void setMinTime(RealT t0) { assert(t0>0); mTimeSpan.t0 = t0; }
100 
101  inline void setMaxTime(RealT t1) { assert(t1>0); mTimeSpan.t1 = t1; }
102 
103  inline void setTimes(
104  RealT t0 = math::Delta<RealT>::value(),
105  RealT t1 = std::numeric_limits<RealT>::max())
106  {
107  assert(t0>0 && t1>0);
108  mTimeSpan.set(t0, t1);
109  }
110 
111  inline void scaleTimes(RealT scale) { mTimeSpan.scale(scale); }
112 
113  inline void reset(
114  const Vec3Type& eye,
115  const Vec3Type& direction,
116  RealT t0 = math::Delta<RealT>::value(),
117  RealT t1 = std::numeric_limits<RealT>::max())
118  {
119  this->setEye(eye);
120  this->setDir(direction);
121  this->setTimes(t0, t1);
122  }
123 
124  inline const Vec3T& eye() const {return mEye;}
125 
126  inline const Vec3T& dir() const {return mDir;}
127 
128  inline const Vec3T& invDir() const {return mInvDir;}
129 
130  inline RealT t0() const {return mTimeSpan.t0;}
131 
132  inline RealT t1() const {return mTimeSpan.t1;}
133 
135  inline Vec3R operator()(RealT time) const { return mEye + mDir * time; }
136 
138  inline Vec3R start() const { return (*this)(mTimeSpan.t0); }
139 
141  inline Vec3R end() const { return (*this)(mTimeSpan.t1); }
142 
144  inline Vec3R mid() const { return (*this)(mTimeSpan.mid()); }
145 
147  inline bool valid(RealT eps=math::Delta<float>::value()) const { return mTimeSpan.valid(eps); }
148 
150  inline bool test(RealT time) const { return mTimeSpan.test(time); }
151 
158  template<typename MapType>
159  inline Ray applyMap(const MapType& map) const
160  {
161  assert(map.isLinear());
162  assert(math::isRelOrApproxEqual(mDir.length(), RealT(1),
164  const Vec3T eye = map.applyMap(mEye);
165  const Vec3T dir = map.applyJacobian(mDir);
166  const RealT length = dir.length();
167  return Ray(eye, dir/length, length*mTimeSpan.t0, length*mTimeSpan.t1);
168  }
169 
176  template<typename MapType>
177  inline Ray applyInverseMap(const MapType& map) const
178  {
179  assert(map.isLinear());
180  assert(math::isRelOrApproxEqual(mDir.length(), RealT(1), Tolerance<RealT>::value(), Delta<RealT>::value()));
181  const Vec3T eye = map.applyInverseMap(mEye);
182  const Vec3T dir = map.applyInverseJacobian(mDir);
183  const RealT length = dir.length();
184  return Ray(eye, dir/length, length*mTimeSpan.t0, length*mTimeSpan.t1);
185  }
186 
189  template<typename GridType>
190  inline Ray indexToWorld(const GridType& grid) const
191  {
192  return this->applyMap(*(grid.transform().baseMap()));
193  }
194 
197  template<typename GridType>
198  inline Ray worldToIndex(const GridType& grid) const
199  {
200  return this->applyInverseMap(*(grid.transform().baseMap()));
201  }
202 
210  inline bool intersects(const Vec3T& center, RealT radius, RealT& t0, RealT& t1) const
211  {
212  const Vec3T origin = mEye - center;
213  const RealT A = mDir.lengthSqr();
214  const RealT B = 2 * mDir.dot(origin);
215  const RealT C = origin.lengthSqr() - radius * radius;
216  const RealT D = B * B - 4 * A * C;
217 
218  if (D < 0) return false;
219 
220  const RealT Q = RealT(-0.5)*(B<0 ? (B + Sqrt(D)) : (B - Sqrt(D)));
221 
222  t0 = Q / A;
223  t1 = C / Q;
224 
225  if (t0 > t1) std::swap(t0, t1);
226  if (t0 < mTimeSpan.t0) t0 = mTimeSpan.t0;
227  if (t1 > mTimeSpan.t1) t1 = mTimeSpan.t1;
228  return t0 <= t1;
229  }
230 
234  inline bool intersects(const Vec3T& center, RealT radius) const
235  {
236  RealT t0, t1;
237  return this->intersects(center, radius, t0, t1)>0;
238  }
239 
244  inline bool clip(const Vec3T& center, RealT radius)
245  {
246  RealT t0, t1;
247  const bool hit = this->intersects(center, radius, t0, t1);
248  if (hit) mTimeSpan.set(t0, t1);
249  return hit;
250  }
251 
259  template<typename BBoxT>
260  inline bool intersects(const BBoxT& bbox, RealT& t0, RealT& t1) const
261  {
262  mTimeSpan.get(t0, t1);
263  for (int i = 0; i < 3; ++i) {
264  RealT a = (bbox.min()[i] - mEye[i]) * mInvDir[i];
265  RealT b = (bbox.max()[i] - mEye[i]) * mInvDir[i];
266  if (a > b) std::swap(a, b);
267  if (a > t0) t0 = a;
268  if (b < t1) t1 = b;
269  if (t0 > t1) return false;
270  }
271  return true;
272  }
273 
276  template<typename BBoxT>
277  inline bool intersects(const BBoxT& bbox) const
278  {
279  RealT t0, t1;
280  return this->intersects(bbox, t0, t1);
281  }
282 
286  template<typename BBoxT>
287  inline bool clip(const BBoxT& bbox)
288  {
289  RealT t0, t1;
290  const bool hit = this->intersects(bbox, t0, t1);
291  if (hit) mTimeSpan.set(t0, t1);
292  return hit;
293  }
294 
300  inline bool intersects(const Vec3T& normal, RealT distance, RealT& t) const
301  {
302  const RealT cosAngle = mDir.dot(normal);
303  if (math::isApproxZero(cosAngle)) return false;//parallel
304  t = (distance - mEye.dot(normal))/cosAngle;
305  return this->test(t);
306  }
307 
313  inline bool intersects(const Vec3T& normal, const Vec3T& point, RealT& t) const
314  {
315  return this->intersects(normal, point.dot(normal), t);
316  }
317 
318 private:
319  Vec3T mEye, mDir, mInvDir;
320  TimeSpan mTimeSpan;
321 }; // end of Ray class
322 
323 
326 template<typename RealT>
327 inline std::ostream& operator<<(std::ostream& os, const Ray<RealT>& r)
328 {
329  os << "eye=" << r.eye() << " dir=" << r.dir() << " 1/dir="<<r.invDir()
330  << " t0=" << r.t0() << " t1=" << r.t1();
331  return os;
332 }
333 
334 } // namespace math
335 } // namespace OPENVDB_VERSION_NAME
336 } // namespace openvdb
337 
338 #endif // OPENVDB_MATH_RAY_HAS_BEEN_INCLUDED
339 
340 // Copyright (c) DreamWorks Animation LLC
341 // All rights reserved. This software is distributed under the
342 // Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
bool valid(RealT eps=math::Delta< RealT >::value()) const
Return true if t1 is larger than t0 by at least eps.
Definition: Ray.h:74
Vec3R start() const
Return the starting point of the ray.
Definition: Ray.h:138
RealT mid() const
Return the midpoint of the ray.
Definition: Ray.h:76
const Vec3T & dir() const
Definition: Ray.h:126
double RealType
Definition: Ray.h:59
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
T length() const
Length of the vector.
Definition: Vec3.h:225
Delta for small floating-point offsets.
Definition: Math.h:124
Vec3R mid() const
Return the midpoint of the ray.
Definition: Ray.h:144
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:133
RealT t0() const
Definition: Ray.h:130
Ray indexToWorld(const GridType &grid) const
Return a new ray in world space, assuming the existing ray is represented in the index space of the s...
Definition: Ray.h:190
RealT t1
Definition: Ray.h:64
float Sqrt(float x)
Return the square root of a floating-point value.
Definition: Math.h:735
void reset(const Vec3Type &eye, const Vec3Type &direction, RealT t0=math::Delta< RealT >::value(), RealT t1=std::numeric_limits< RealT >::max())
Definition: Ray.h:113
const Vec3T & invDir() const
Definition: Ray.h:128
bool intersects(const BBoxT &bbox, RealT &t0, RealT &t1) const
Return true if the Ray intersects the specified axisaligned bounding box.
Definition: Ray.h:260
bool intersects(const BBoxT &bbox) const
Return true if this ray intersects the specified bounding box.
Definition: Ray.h:277
RealT t1() const
Definition: Ray.h:132
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h:128
bool isApproxZero(const Type &x)
Return true if x is equal to zero to within the default floating-point comparison tolerance...
Definition: Math.h:320
bool clip(const BBoxT &bbox)
Return true if this ray intersects the specified bounding box.
Definition: Ray.h:287
Vec3R end() const
Return the endpoint of the ray.
Definition: Ray.h:141
bool isRelOrApproxEqual(const Type &a, const Type &b, const Type &absTol, const Type &relTol)
Definition: Math.h:425
T lengthSqr() const
Definition: Vec3.h:236
bool intersects(const Vec3T &center, RealT radius, RealT &t0, RealT &t1) const
Return true if this ray intersects the specified sphere.
Definition: Ray.h:210
TimeSpan(RealT _t0, RealT _t1)
Constructor.
Definition: Ray.h:68
Definition: Exceptions.h:40
Ray(const Vec3Type &eye=Vec3Type(0, 0, 0), const Vec3Type &direction=Vec3Type(1, 0, 0), RealT t0=math::Delta< RealT >::value(), RealT t1=std::numeric_limits< RealT >::max())
Definition: Ray.h:83
Tolerance for floating-point comparison.
Definition: Math.h:117
void setMaxTime(RealT t1)
Definition: Ray.h:101
bool intersects(const Vec3T &center, RealT radius) const
Return true if this ray intersects the specified sphere.
Definition: Ray.h:234
void setDir(const Vec3Type &dir)
Definition: Ray.h:93
bool test(RealT t) const
Return true if time is inclusive.
Definition: Ray.h:80
Ray applyMap(const MapType &map) const
Return a new Ray that is transformed with the specified map.
Definition: Ray.h:159
Definition: Ray.h:53
void setMinTime(RealT t0)
Definition: Ray.h:99
bool clip(const Vec3T &center, RealT radius)
Return true if this ray intersects the specified sphere.
Definition: Ray.h:244
bool test(RealT time) const
Return true if time is within t0 and t1, both inclusive.
Definition: Ray.h:150
TimeSpan()
Default constructor.
Definition: Ray.h:66
bool intersects(const Vec3T &normal, const Vec3T &point, RealT &t) const
Return true if the Ray intersects the plane specified by a normal and point.
Definition: Ray.h:313
const Vec3T & eye() const
Definition: Ray.h:124
void setEye(const Vec3Type &eye)
Definition: Ray.h:91
void scale(RealT s)
Multiplies both times.
Definition: Ray.h:78
bool intersects(const Vec3T &normal, RealT distance, RealT &t) const
Return true if the Ray intersects the plane specified by a normal and distance from the origin...
Definition: Ray.h:300
T dot(const Vec3< T > &v) const
Dot product.
Definition: Vec3.h:216
bool valid(RealT eps=math::Delta< float >::value()) const
Return true if t1 is larger than t0 by at least eps.
Definition: Ray.h:147
void scaleTimes(RealT scale)
Definition: Ray.h:111
Ray worldToIndex(const GridType &grid) const
Return a new ray in the index space of the specified grid, assuming the existing ray is represented i...
Definition: Ray.h:198
void setTimes(RealT t0=math::Delta< RealT >::value(), RealT t1=std::numeric_limits< RealT >::max())
Definition: Ray.h:103
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h:180
MatType scale(const Vec3< typename MatType::value_type > &s)
Return a matrix that scales by s.
Definition: Mat.h:647
Ray applyInverseMap(const MapType &map) const
Return a new Ray that is transformed with the inverse of the specified map.
Definition: Ray.h:177
Vec3R operator()(RealT time) const
Return the position along the ray at the specified time.
Definition: Ray.h:135