OpenVDB  6.2.1
Vec3.h
Go to the documentation of this file.
1 //
3 // Copyright (c) DreamWorks Animation LLC
4 //
5 // All rights reserved. This software is distributed under the
6 // Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
7 //
8 // Redistributions of source code must retain the above copyright
9 // and license notice and the following restrictions and disclaimer.
10 //
11 // * Neither the name of DreamWorks Animation nor the names of
12 // its contributors may be used to endorse or promote products derived
13 // from this software without specific prior written permission.
14 //
15 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
20 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 // IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
27 // LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
28 //
30 
31 #ifndef OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
32 #define OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
33 
34 #include <openvdb/Exceptions.h>
35 #include "Math.h"
36 #include "Tuple.h"
37 #include <algorithm>
38 #include <cmath>
39 #include <type_traits>
40 
41 
42 namespace openvdb {
44 namespace OPENVDB_VERSION_NAME {
45 namespace math {
46 
47 template<typename T> class Mat3;
48 
49 template<typename T>
50 class Vec3: public Tuple<3, T>
51 {
52 public:
53  using value_type = T;
54  using ValueType = T;
55 
57  Vec3() {}
58 
60  explicit Vec3(T val) { this->mm[0] = this->mm[1] = this->mm[2] = val; }
61 
63  Vec3(T x, T y, T z)
64  {
65  this->mm[0] = x;
66  this->mm[1] = y;
67  this->mm[2] = z;
68  }
69 
71  template <typename Source>
72  Vec3(Source *a)
73  {
74  this->mm[0] = static_cast<T>(a[0]);
75  this->mm[1] = static_cast<T>(a[1]);
76  this->mm[2] = static_cast<T>(a[2]);
77  }
78 
81  template<typename Source>
82  explicit Vec3(const Tuple<3, Source> &v)
83  {
84  this->mm[0] = static_cast<T>(v[0]);
85  this->mm[1] = static_cast<T>(v[1]);
86  this->mm[2] = static_cast<T>(v[2]);
87  }
88 
92  template<typename Other>
93  explicit Vec3(Other val,
94  typename std::enable_if<std::is_arithmetic<Other>::value, Conversion>::type = Conversion{})
95  {
96  this->mm[0] = this->mm[1] = this->mm[2] = static_cast<T>(val);
97  }
98 
101  template<typename Other>
102  Vec3(const Vec3<Other>& v)
103  {
104  this->mm[0] = static_cast<T>(v[0]);
105  this->mm[1] = static_cast<T>(v[1]);
106  this->mm[2] = static_cast<T>(v[2]);
107  }
108 
110  T& x() { return this->mm[0]; }
111  T& y() { return this->mm[1]; }
112  T& z() { return this->mm[2]; }
113 
115  T x() const { return this->mm[0]; }
116  T y() const { return this->mm[1]; }
117  T z() const { return this->mm[2]; }
118 
119  T* asPointer() { return this->mm; }
120  const T* asPointer() const { return this->mm; }
121 
123  T& operator()(int i) { return this->mm[i]; }
124 
126  T operator()(int i) const { return this->mm[i]; }
127 
130  const Vec3<T>& init(T x=0, T y=0, T z=0)
131  {
132  this->mm[0] = x; this->mm[1] = y; this->mm[2] = z;
133  return *this;
134  }
135 
136 
138  const Vec3<T>& setZero()
139  {
140  this->mm[0] = 0; this->mm[1] = 0; this->mm[2] = 0;
141  return *this;
142  }
143 
146  template<typename Source>
147  const Vec3<T>& operator=(const Vec3<Source> &v)
148  {
149  // note: don't static_cast because that suppresses warnings
150  this->mm[0] = v[0];
151  this->mm[1] = v[1];
152  this->mm[2] = v[2];
153 
154  return *this;
155  }
156 
158  bool eq(const Vec3<T> &v, T eps = static_cast<T>(1.0e-7)) const
159  {
160  return isRelOrApproxEqual(this->mm[0], v.mm[0], eps, eps) &&
161  isRelOrApproxEqual(this->mm[1], v.mm[1], eps, eps) &&
162  isRelOrApproxEqual(this->mm[2], v.mm[2], eps, eps);
163  }
164 
165 
167  Vec3<T> operator-() const { return Vec3<T>(-this->mm[0], -this->mm[1], -this->mm[2]); }
168 
171  template <typename T0, typename T1>
172  const Vec3<T>& add(const Vec3<T0> &v1, const Vec3<T1> &v2)
173  {
174  this->mm[0] = v1[0] + v2[0];
175  this->mm[1] = v1[1] + v2[1];
176  this->mm[2] = v1[2] + v2[2];
177 
178  return *this;
179  }
180 
183  template <typename T0, typename T1>
184  const Vec3<T>& sub(const Vec3<T0> &v1, const Vec3<T1> &v2)
185  {
186  this->mm[0] = v1[0] - v2[0];
187  this->mm[1] = v1[1] - v2[1];
188  this->mm[2] = v1[2] - v2[2];
189 
190  return *this;
191  }
192 
195  template <typename T0, typename T1>
196  const Vec3<T>& scale(T0 scale, const Vec3<T1> &v)
197  {
198  this->mm[0] = scale * v[0];
199  this->mm[1] = scale * v[1];
200  this->mm[2] = scale * v[2];
201 
202  return *this;
203  }
204 
205  template <typename T0, typename T1>
206  const Vec3<T> &div(T0 scale, const Vec3<T1> &v)
207  {
208  this->mm[0] = v[0] / scale;
209  this->mm[1] = v[1] / scale;
210  this->mm[2] = v[2] / scale;
211 
212  return *this;
213  }
214 
216  T dot(const Vec3<T> &v) const
217  {
218  return
219  this->mm[0]*v.mm[0] +
220  this->mm[1]*v.mm[1] +
221  this->mm[2]*v.mm[2];
222  }
223 
225  T length() const
226  {
227  return static_cast<T>(sqrt(double(
228  this->mm[0]*this->mm[0] +
229  this->mm[1]*this->mm[1] +
230  this->mm[2]*this->mm[2])));
231  }
232 
233 
236  T lengthSqr() const
237  {
238  return
239  this->mm[0]*this->mm[0] +
240  this->mm[1]*this->mm[1] +
241  this->mm[2]*this->mm[2];
242  }
243 
245  Vec3<T> cross(const Vec3<T> &v) const
246  {
247  return Vec3<T>(this->mm[1]*v.mm[2] - this->mm[2]*v.mm[1],
248  this->mm[2]*v.mm[0] - this->mm[0]*v.mm[2],
249  this->mm[0]*v.mm[1] - this->mm[1]*v.mm[0]);
250  }
251 
252 
254  const Vec3<T>& cross(const Vec3<T> &v1, const Vec3<T> &v2)
255  {
256  // assert(this!=&v1);
257  // assert(this!=&v2);
258  this->mm[0] = v1.mm[1]*v2.mm[2] - v1.mm[2]*v2.mm[1];
259  this->mm[1] = v1.mm[2]*v2.mm[0] - v1.mm[0]*v2.mm[2];
260  this->mm[2] = v1.mm[0]*v2.mm[1] - v1.mm[1]*v2.mm[0];
261  return *this;
262  }
263 
265  template <typename S>
266  const Vec3<T> &operator*=(S scalar)
267  {
269  const auto value0 = this->mm[0] * scalar;
270  const auto value1 = this->mm[1] * scalar;
271  const auto value2 = this->mm[2] * scalar;
273  this->mm[0] = static_cast<T>(value0);
274  this->mm[1] = static_cast<T>(value1);
275  this->mm[2] = static_cast<T>(value2);
276  return *this;
277  }
278 
280  template <typename S>
281  const Vec3<T> &operator*=(const Vec3<S> &v1)
282  {
283  this->mm[0] *= v1[0];
284  this->mm[1] *= v1[1];
285  this->mm[2] *= v1[2];
286  return *this;
287  }
288 
290  template <typename S>
291  const Vec3<T> &operator/=(S scalar)
292  {
293  this->mm[0] /= scalar;
294  this->mm[1] /= scalar;
295  this->mm[2] /= scalar;
296  return *this;
297  }
298 
300  template <typename S>
301  const Vec3<T> &operator/=(const Vec3<S> &v1)
302  {
303  this->mm[0] /= v1[0];
304  this->mm[1] /= v1[1];
305  this->mm[2] /= v1[2];
306  return *this;
307  }
308 
310  template <typename S>
311  const Vec3<T> &operator+=(S scalar)
312  {
314  const auto value0 = this->mm[0] + scalar;
315  const auto value1 = this->mm[1] + scalar;
316  const auto value2 = this->mm[2] + scalar;
318  this->mm[0] = static_cast<T>(value0);
319  this->mm[1] = static_cast<T>(value1);
320  this->mm[2] = static_cast<T>(value2);
321  return *this;
322  }
323 
325  template <typename S>
326  const Vec3<T> &operator+=(const Vec3<S> &v1)
327  {
328  this->mm[0] += v1[0];
329  this->mm[1] += v1[1];
330  this->mm[2] += v1[2];
331  return *this;
332  }
333 
335  template <typename S>
336  const Vec3<T> &operator-=(S scalar)
337  {
338  this->mm[0] -= scalar;
339  this->mm[1] -= scalar;
340  this->mm[2] -= scalar;
341  return *this;
342  }
343 
345  template <typename S>
346  const Vec3<T> &operator-=(const Vec3<S> &v1)
347  {
348  this->mm[0] -= v1[0];
349  this->mm[1] -= v1[1];
350  this->mm[2] -= v1[2];
351  return *this;
352  }
353 
356  inline const Vec3<T>& exp()
357  {
358  this->mm[0] = std::exp(this->mm[0]);
359  this->mm[1] = std::exp(this->mm[1]);
360  this->mm[2] = std::exp(this->mm[2]);
361  return *this;
362  }
363 
366  inline const Vec3<T>& log()
367  {
368  this->mm[0] = std::log(this->mm[0]);
369  this->mm[1] = std::log(this->mm[1]);
370  this->mm[2] = std::log(this->mm[2]);
371  return *this;
372  }
373 
375  inline T sum() const
376  {
377  return this->mm[0] + this->mm[1] + this->mm[2];
378  }
379 
381  inline T product() const
382  {
383  return this->mm[0] * this->mm[1] * this->mm[2];
384  }
385 
387  bool normalize(T eps = T(1.0e-7))
388  {
389  T d = length();
390  if (isApproxEqual(d, T(0), eps)) {
391  return false;
392  }
393  *this *= (T(1) / d);
394  return true;
395  }
396 
397 
399  Vec3<T> unit(T eps=0) const
400  {
401  T d;
402  return unit(eps, d);
403  }
404 
406  Vec3<T> unit(T eps, T& len) const
407  {
408  len = length();
409  if (isApproxEqual(len, T(0), eps)) {
410  OPENVDB_THROW(ArithmeticError, "Normalizing null 3-vector");
411  }
412  return *this / len;
413  }
414 
417  {
418  T l2 = lengthSqr();
419  return l2 ? *this / static_cast<T>(sqrt(l2)) : Vec3<T>(1, 0 ,0);
420  }
421 
422  // Number of cols, rows, elements
423  static unsigned numRows() { return 1; }
424  static unsigned numColumns() { return 3; }
425  static unsigned numElements() { return 3; }
426 
429  T component(const Vec3<T> &onto, T eps = static_cast<T>(1.0e-7)) const
430  {
431  T l = onto.length();
432  if (isApproxEqual(l, T(0), eps)) return 0;
433 
434  return dot(onto)*(T(1)/l);
435  }
436 
439  Vec3<T> projection(const Vec3<T> &onto, T eps = static_cast<T>(1.0e-7)) const
440  {
441  T l = onto.lengthSqr();
442  if (isApproxEqual(l, T(0), eps)) return Vec3::zero();
443 
444  return onto*(dot(onto)*(T(1)/l));
445  }
446 
451  {
452  Vec3<T> u;
453  T l;
454 
455  if ( fabs(this->mm[0]) >= fabs(this->mm[1]) ) {
456  // v.x or v.z is the largest magnitude component, swap them
457  l = this->mm[0]*this->mm[0] + this->mm[2]*this->mm[2];
458  l = static_cast<T>(T(1)/sqrt(double(l)));
459  u.mm[0] = -this->mm[2]*l;
460  u.mm[1] = T(0);
461  u.mm[2] = +this->mm[0]*l;
462  } else {
463  // W.y or W.z is the largest magnitude component, swap them
464  l = this->mm[1]*this->mm[1] + this->mm[2]*this->mm[2];
465  l = static_cast<T>(T(1)/sqrt(double(l)));
466  u.mm[0] = T(0);
467  u.mm[1] = +this->mm[2]*l;
468  u.mm[2] = -this->mm[1]*l;
469  }
470 
471  return u;
472  }
473 
475  Vec3<T> sorted() const
476  {
477  Vec3<T> r(*this);
478  if( r.mm[0] > r.mm[1] ) std::swap(r.mm[0], r.mm[1]);
479  if( r.mm[1] > r.mm[2] ) std::swap(r.mm[1], r.mm[2]);
480  if( r.mm[0] > r.mm[1] ) std::swap(r.mm[0], r.mm[1]);
481  return r;
482  }
483 
486  {
487  return Vec3<T>(this->mm[2], this->mm[1], this->mm[0]);
488  }
489 
491  static Vec3<T> zero() { return Vec3<T>(0, 0, 0); }
492  static Vec3<T> ones() { return Vec3<T>(1, 1, 1); }
493 };
494 
495 
497 template <typename T0, typename T1>
498 inline bool operator==(const Vec3<T0> &v0, const Vec3<T1> &v1)
499 {
500  return isExactlyEqual(v0[0], v1[0]) && isExactlyEqual(v0[1], v1[1])
501  && isExactlyEqual(v0[2], v1[2]);
502 }
503 
505 template <typename T0, typename T1>
506 inline bool operator!=(const Vec3<T0> &v0, const Vec3<T1> &v1) { return !(v0==v1); }
507 
509 template <typename S, typename T>
510 inline Vec3<typename promote<S, T>::type> operator*(S scalar, const Vec3<T> &v) { return v*scalar; }
511 
513 template <typename S, typename T>
515 {
517  result *= scalar;
518  return result;
519 }
520 
522 template <typename T0, typename T1>
524 {
525  Vec3<typename promote<T0, T1>::type> result(v0[0] * v1[0], v0[1] * v1[1], v0[2] * v1[2]);
526  return result;
527 }
528 
529 
531 template <typename S, typename T>
533 {
534  return Vec3<typename promote<S, T>::type>(scalar/v[0], scalar/v[1], scalar/v[2]);
535 }
536 
538 template <typename S, typename T>
540 {
542  result /= scalar;
543  return result;
544 }
545 
547 template <typename T0, typename T1>
549 {
550  Vec3<typename promote<T0, T1>::type> result(v0[0] / v1[0], v0[1] / v1[1], v0[2] / v1[2]);
551  return result;
552 }
553 
555 template <typename T0, typename T1>
557 {
559  result += v1;
560  return result;
561 }
562 
564 template <typename S, typename T>
566 {
568  result += scalar;
569  return result;
570 }
571 
573 template <typename T0, typename T1>
575 {
577  result -= v1;
578  return result;
579 }
580 
582 template <typename S, typename T>
584 {
586  result -= scalar;
587  return result;
588 }
589 
592 template <typename T>
593 inline T angle(const Vec3<T> &v1, const Vec3<T> &v2)
594 {
595  Vec3<T> c = v1.cross(v2);
596  return static_cast<T>(atan2(c.length(), v1.dot(v2)));
597 }
598 
599 template <typename T>
600 inline bool
601 isApproxEqual(const Vec3<T>& a, const Vec3<T>& b)
602 {
603  return a.eq(b);
604 }
605 template <typename T>
606 inline bool
607 isApproxEqual(const Vec3<T>& a, const Vec3<T>& b, const Vec3<T>& eps)
608 {
609  return isApproxEqual(a.x(), b.x(), eps.x()) &&
610  isApproxEqual(a.y(), b.y(), eps.y()) &&
611  isApproxEqual(a.z(), b.z(), eps.z());
612 }
613 
614 template<typename T>
615 inline Vec3<T>
616 Abs(const Vec3<T>& v)
617 {
618  return Vec3<T>(Abs(v[0]), Abs(v[1]), Abs(v[2]));
619 }
620 
623 template <typename T>
624 inline void orthonormalize(Vec3<T> &v1, Vec3<T> &v2, Vec3<T> &v3)
625 {
626  // If the input vectors are v0, v1, and v2, then the Gram-Schmidt
627  // orthonormalization produces vectors u0, u1, and u2 as follows,
628  //
629  // u0 = v0/|v0|
630  // u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
631  // u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
632  //
633  // where |A| indicates length of vector A and A*B indicates dot
634  // product of vectors A and B.
635 
636  // compute u0
637  v1.normalize();
638 
639  // compute u1
640  T d0 = v1.dot(v2);
641  v2 -= v1*d0;
642  v2.normalize();
643 
644  // compute u2
645  T d1 = v2.dot(v3);
646  d0 = v1.dot(v3);
647  v3 -= v1*d0 + v2*d1;
648  v3.normalize();
649 }
650 
655 
657 template <typename T>
658 inline Vec3<T> minComponent(const Vec3<T> &v1, const Vec3<T> &v2)
659 {
660  return Vec3<T>(
661  std::min(v1.x(), v2.x()),
662  std::min(v1.y(), v2.y()),
663  std::min(v1.z(), v2.z()));
664 }
665 
667 template <typename T>
668 inline Vec3<T> maxComponent(const Vec3<T> &v1, const Vec3<T> &v2)
669 {
670  return Vec3<T>(
671  std::max(v1.x(), v2.x()),
672  std::max(v1.y(), v2.y()),
673  std::max(v1.z(), v2.z()));
674 }
675 
678 template <typename T>
679 inline Vec3<T> Exp(Vec3<T> v) { return v.exp(); }
680 
683 template <typename T>
684 inline Vec3<T> Log(Vec3<T> v) { return v.log(); }
685 
690 
691 } // namespace math
692 } // namespace OPENVDB_VERSION_NAME
693 } // namespace openvdb
694 
695 #endif // OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
696 
697 // Copyright (c) DreamWorks Animation LLC
698 // All rights reserved. This software is distributed under the
699 // Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
Vec3< T > unit(T eps=0) const
return normalized this, throws if null vector
Definition: Vec3.h:399
Real value_type
Definition: Vec3.h:53
#define OPENVDB_NO_TYPE_CONVERSION_WARNING_BEGIN
Bracket code with OPENVDB_NO_TYPE_CONVERSION_WARNING_BEGIN/_END, to inhibit warnings about type conve...
Definition: Platform.h:223
bool normalize(T eps=T(1.0e-7))
this = normalized this
Definition: Vec3.h:387
Vec3< T > Log(Vec3< T > v)
Return a vector with log applied to each of the components of the input vector.
Definition: Vec3.h:684
static unsigned numElements()
Definition: Vec3.h:425
static unsigned numColumns()
Definition: Vec3.h:424
const Vec3< T > & scale(T0 scale, const Vec3< T1 > &v)
Definition: Vec3.h:196
bool isExactlyEqual(const T0 &a, const T1 &b)
Return true if a is exactly equal to b.
Definition: Math.h:415
Real ValueType
Definition: Vec3.h:54
const Vec3< T > & sub(const Vec3< T0 > &v1, const Vec3< T1 > &v2)
Definition: Vec3.h:184
Vec3< typename promote< T0, T1 >::type > operator/(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Divide corresponding elements of v0 and v1 and return the result.
Definition: Vec3.h:548
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
T length() const
Length of the vector.
Definition: Vec3.h:225
Vec3(const Vec3< Other > &v)
Construct a Vec3 from another Vec3 with a possibly different value type.
Definition: Vec3.h:102
T angle(const Vec3< T > &v1, const Vec3< T > &v2)
Definition: Vec3.h:593
Definition: Tuple.h:55
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:133
T product() const
Return the product of all the vector components.
Definition: Vec3.h:381
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:109
Dummy class for tag dispatch of conversion constructors.
Definition: Tuple.h:49
Vec3< T > unit(T eps, T &len) const
return normalized this and length, throws if null vector
Definition: Vec3.h:406
const T * asPointer() const
Definition: Vec3.h:120
Vec3(const Tuple< 3, Source > &v)
Construct a Vec3 from a 3-Tuple with a possibly different value type.
Definition: Vec3.h:82
Definition: Exceptions.h:83
Vec3< typename promote< S, T >::type > operator-(const Vec3< T > &v, S scalar)
Subtract scalar from each element of the given vector and return the result.
Definition: Vec3.h:583
Vec3< T > unitSafe() const
return normalized this, or (1, 0, 0) if this is null vector
Definition: Vec3.h:416
const Vec3< T > & operator=(const Vec3< Source > &v)
Assignment operator.
Definition: Vec3.h:147
const Vec3< T > & cross(const Vec3< T > &v1, const Vec3< T > &v2)
this = v1 cross v2, v1 and v2 must be distinct objects than "this"
Definition: Vec3.h:254
MatType unit(const MatType &mat, typename MatType::value_type eps=1.0e-8)
Return a copy of the given matrix with its upper 3×3 rows normalized.
Definition: Mat.h:680
Vec3< T > getArbPerpendicular() const
Definition: Vec3.h:450
Vec3(Other val, typename std::enable_if< std::is_arithmetic< Other >::value, Conversion >::type=Conversion{})
Construct a vector all of whose components have the given value, which may be of an arithmetic type d...
Definition: Vec3.h:93
Vec3(T x, T y, T z)
Constructor with three arguments, e.g. Vec3d v(1,2,3);.
Definition: Vec3.h:63
#define OPENVDB_NO_TYPE_CONVERSION_WARNING_END
Definition: Platform.h:224
Vec3< T > minComponent(const Vec3< T > &v1, const Vec3< T > &v2)
Return component-wise minimum of the two vectors.
Definition: Vec3.h:658
T * asPointer()
Definition: Vec3.h:119
const Vec3< T > & div(T0 scale, const Vec3< T1 > &v)
Definition: Vec3.h:206
const Vec3< T > & operator-=(const Vec3< S > &v1)
Subtract each element of the given vector from the corresponding element of this vector.
Definition: Vec3.h:346
const Vec3< T > & operator/=(S scalar)
Divide each element of this vector by scalar.
Definition: Vec3.h:291
Definition: Mat.h:197
Vec3< T > cross(const Vec3< T > &v) const
Return the cross product of "this" vector and v;.
Definition: Vec3.h:245
Vec3< typename promote< S, T >::type > operator+(const Vec3< T > &v, S scalar)
Add scalar to each element of the given vector and return the result.
Definition: Vec3.h:565
Vec3< T > maxComponent(const Vec3< T > &v1, const Vec3< T > &v2)
Return component-wise maximum of the two vectors.
Definition: Vec3.h:668
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h:128
const Vec3< T > & setZero()
Set "this" vector to zero.
Definition: Vec3.h:138
const Vec3< T > & operator*=(const Vec3< S > &v1)
Multiply each element of this vector by the corresponding element of the given vector.
Definition: Vec3.h:281
bool isRelOrApproxEqual(const Type &a, const Type &b, const Type &absTol, const Type &relTol)
Definition: Math.h:425
T lengthSqr() const
Definition: Vec3.h:236
T & z()
Definition: Vec3.h:112
bool operator!=(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Inequality operator, does exact floating point comparisons.
Definition: Vec3.h:506
T & y()
Definition: Vec3.h:111
Definition: Exceptions.h:40
T x() const
Get the component, e.g. float f = v.y();.
Definition: Vec3.h:115
const Vec3< T > & operator-=(S scalar)
Subtract scalar from each element of this vector.
Definition: Vec3.h:336
T operator()(int i) const
Alternative indexed constant reference to the elements,.
Definition: Vec3.h:126
static Vec3< T > ones()
Definition: Vec3.h:492
Vec3< T > projection(const Vec3< T > &onto, T eps=static_cast< T >(1.0e-7)) const
Definition: Vec3.h:439
Vec3(T val)
Construct a vector all of whose components have the given value.
Definition: Vec3.h:60
Vec3< T > Exp(Vec3< T > v)
Return a vector with the exponent applied to each of the components of the input vector.
Definition: Vec3.h:679
const std::enable_if<!VecTraits< T >::IsVec, T >::type & min(const T &a, const T &b)
Definition: Composite.h:129
Vec3(Source *a)
Constructor with array argument, e.g. double a[3]; Vec3d v(a);.
Definition: Vec3.h:72
T y() const
Definition: Vec3.h:116
const Vec3< T > & init(T x=0, T y=0, T z=0)
Definition: Vec3.h:130
const Vec3< T > & operator*=(S scalar)
Multiply each element of this vector by scalar.
Definition: Vec3.h:266
Vec3< T > Abs(const Vec3< T > &v)
Definition: Vec3.h:616
Vec3< T > sorted() const
Return a vector with the components of this in ascending order.
Definition: Vec3.h:475
void orthonormalize(Vec3< T > &v1, Vec3< T > &v2, Vec3< T > &v3)
Definition: Vec3.h:624
const Vec3< T > & log()
Definition: Vec3.h:366
bool operator==(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Equality operator, does exact floating point comparisons.
Definition: Vec3.h:498
const Vec3< T > & operator+=(const Vec3< S > &v1)
Add each element of the given vector to the corresponding element of this vector. ...
Definition: Vec3.h:326
Vec3< T > operator-() const
Negation operator, for e.g. v1 = -v2;.
Definition: Vec3.h:167
bool isApproxEqual(const Vec3< T > &a, const Vec3< T > &b, const Vec3< T > &eps)
Definition: Vec3.h:607
static unsigned numRows()
Definition: Vec3.h:423
T dot(const Vec3< T > &v) const
Dot product.
Definition: Vec3.h:216
T z() const
Definition: Vec3.h:117
Vec3()
Trivial constructor, the vector is NOT initialized.
Definition: Vec3.h:57
const Vec3< T > & operator+=(S scalar)
Add scalar to each element of this vector.
Definition: Vec3.h:311
const Vec3< T > & exp()
Definition: Vec3.h:356
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h:180
Vec3< T > reversed() const
Return the vector (z, y, x)
Definition: Vec3.h:485
const Vec3< T > & add(const Vec3< T0 > &v1, const Vec3< T1 > &v2)
Definition: Vec3.h:172
T & operator()(int i)
Alternative indexed reference to the elements.
Definition: Vec3.h:123
MatType scale(const Vec3< typename MatType::value_type > &s)
Return a matrix that scales by s.
Definition: Mat.h:647
T component(const Vec3< T > &onto, T eps=static_cast< T >(1.0e-7)) const
Definition: Vec3.h:429
const Vec3< T > & operator/=(const Vec3< S > &v1)
Divide each element of this vector by the corresponding element of the given vector.
Definition: Vec3.h:301
static Vec3< T > zero()
Predefined constants, e.g. Vec3d v = Vec3d::xNegAxis();.
Definition: Vec3.h:491
bool eq(const Vec3< T > &v, T eps=static_cast< T >(1.0e-7)) const
Test if "this" vector is equivalent to vector v with tolerance of eps.
Definition: Vec3.h:158
T & x()
Reference to the component, e.g. v.x() = 4.5f;.
Definition: Vec3.h:110
T sum() const
Return the sum of all the vector components.
Definition: Vec3.h:375
Vec3< typename promote< T0, T1 >::type > operator*(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Multiply corresponding elements of v0 and v1 and return the result.
Definition: Vec3.h:523