![]() |
OpenVDB 13.0.1
|
Preconditioned conjugate gradient solver (solves Ax = b using the conjugate gradient method with one of a selection of preconditioners) More...
#include <openvdb/Exceptions.h>#include <openvdb/Types.h>#include <openvdb/util/logging.h>#include <openvdb/util/Assert.h>#include <openvdb/util/NullInterrupter.h>#include "Math.h"#include <tbb/parallel_for.h>#include <tbb/parallel_reduce.h>#include <algorithm>#include <cmath>#include <limits>#include <sstream>#include <string>Go to the source code of this file.
Namespaces | |
| namespace | openvdb |
| namespace | openvdb::v13_0 |
| namespace | openvdb::v13_0::math |
| namespace | openvdb::v13_0::math::pcg |
Typedefs | |
| using | SizeType = Index32 |
| using | SizeRange = tbb::blocked_range<SizeType> |
| using | VectorS = Vector<float> |
| using | VectorD = Vector<double> |
Functions | |
| template<typename ValueType> | |
| State | terminationDefaults () |
| Return default termination conditions for a conjugate gradient solver. | |
| template<typename PositiveDefMatrix> | |
| State | solve (const PositiveDefMatrix &A, const Vector< typename PositiveDefMatrix::ValueType > &b, Vector< typename PositiveDefMatrix::ValueType > &x, Preconditioner< typename PositiveDefMatrix::ValueType > &preconditioner, const State &termination=terminationDefaults< typename PositiveDefMatrix::ValueType >()) |
| Solve Ax = b via the preconditioned conjugate gradient method. | |
| template<typename PositiveDefMatrix, typename Interrupter> | |
| State | solve (const PositiveDefMatrix &A, const Vector< typename PositiveDefMatrix::ValueType > &b, Vector< typename PositiveDefMatrix::ValueType > &x, Preconditioner< typename PositiveDefMatrix::ValueType > &preconditioner, Interrupter &interrupter, const State &termination=terminationDefaults< typename PositiveDefMatrix::ValueType >()) |
| Solve Ax = b via the preconditioned conjugate gradient method. | |
| std::ostream & | operator<< (std::ostream &os, const State &state) |
Preconditioned conjugate gradient solver (solves Ax = b using the conjugate gradient method with one of a selection of preconditioners)