OpenVDB  9.1.1
Classes | Namespaces | Enumerations | Functions
VolumeToMesh.h File Reference

Extract polygonal surfaces from scalar volumes. More...

#include <openvdb/Platform.h>
#include <openvdb/math/Operators.h>
#include <openvdb/tree/ValueAccessor.h>
#include <openvdb/util/Util.h>
#include <openvdb/openvdb.h>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/task_arena.h>
#include <cmath>
#include <cstring>
#include <map>
#include <memory>
#include <set>
#include <type_traits>
#include <vector>

Go to the source code of this file.

Classes

class  PolygonPool
 Collection of quads and triangles. More...
 
struct  VolumeToMesh
 Mesh any scalar grid that has a continuous isosurface. More...
 

Namespaces

 openvdb
 
 openvdb::v9_1
 
 openvdb::v9_1::tools
 

Typedefs

using PointList = std::unique_ptr< openvdb::Vec3s[]>
 Point and primitive list types. More...
 
using PolygonPoolList = std::unique_ptr< PolygonPool[]>
 Point and primitive list types. More...
 

Enumerations

enum  { POLYFLAG_EXTERIOR = 0x1, POLYFLAG_FRACTURE_SEAM = 0x2, POLYFLAG_SUBDIVIDED = 0x4 }
 Polygon flags, used for reference based meshing. More...
 

Functions

template<typename GridType >
void volumeToMesh (const GridType &grid, std::vector< Vec3s > &points, std::vector< Vec4I > &quads, double isovalue=0.0)
 Uniformly mesh any scalar grid that has a continuous isosurface. More...
 
template<typename GridType >
void volumeToMesh (const GridType &grid, std::vector< Vec3s > &points, std::vector< Vec3I > &triangles, std::vector< Vec4I > &quads, double isovalue=0.0, double adaptivity=0.0, bool relaxDisorientedTriangles=true)
 Adaptively mesh any scalar grid that has a continuous isosurface. More...
 
Vec3d findFeaturePoint (const std::vector< Vec3d > &points, const std::vector< Vec3d > &normals)
 Given a set of tangent elements, points with corresponding normals, this method returns the intersection point of all tangent elements. More...
 

Detailed Description

Extract polygonal surfaces from scalar volumes.

Author
Mihai Alden