OpenVDB 13.0.1
Loading...
Searching...
No Matches
Quat.h
Go to the documentation of this file.
1// Copyright Contributors to the OpenVDB Project
2// SPDX-License-Identifier: Apache-2.0
3
4#ifndef OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
5#define OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
6
7#include "Mat.h"
8#include "Mat3.h"
9#include "Math.h"
10#include "Vec3.h"
11#include <openvdb/Exceptions.h>
12#include <openvdb/util/Assert.h>
13#include <cmath>
14#include <iostream>
15#include <sstream>
16#include <string>
17
18
19namespace openvdb {
21namespace OPENVDB_VERSION_NAME {
22namespace math {
23
24template<typename T> class Quat;
25
26/// Linear interpolation between the two quaternions
27template <typename T>
28Quat<T> slerp(const Quat<T> &q1, const Quat<T> &q2, T t, T tolerance=0.00001)
29{
30 T qdot, angle, sineAngle;
31
32 qdot = q1.dot(q2);
33
34 if (fabs(qdot) >= 1.0) {
35 angle = 0; // not necessary but suppresses compiler warning
36 sineAngle = 0;
37 } else {
38 angle = acos(qdot);
39 sineAngle = sin(angle);
40 }
41
42 //
43 // Denominator close to 0 corresponds to the case where the
44 // two quaternions are close to the same rotation. In this
45 // case linear interpolation is used but we normalize to
46 // guarantee unit length
47 //
48 if (sineAngle <= tolerance) {
49 T s = 1.0 - t;
50
51 Quat<T> qtemp(s * q1[0] + t * q2[0], s * q1[1] + t * q2[1],
52 s * q1[2] + t * q2[2], s * q1[3] + t * q2[3]);
53 //
54 // Check the case where two close to antipodal quaternions were
55 // blended resulting in a nearly zero result which can happen,
56 // for example, if t is close to 0.5. In this case it is not safe
57 // to project back onto the sphere.
58 //
59 double lengthSquared = qtemp.dot(qtemp);
60
61 if (lengthSquared <= tolerance * tolerance) {
62 qtemp = (t < 0.5) ? q1 : q2;
63 } else {
64 qtemp *= 1.0 / sqrt(lengthSquared);
65 }
66 return qtemp;
67 } else {
68
69 T sine = 1.0 / sineAngle;
70 T a = sin((1.0 - t) * angle) * sine;
71 T b = sin(t * angle) * sine;
72 return Quat<T>(a * q1[0] + b * q2[0], a * q1[1] + b * q2[1],
73 a * q1[2] + b * q2[2], a * q1[3] + b * q2[3]);
74 }
75
76}
77
78template<typename T>
79class Quat
80{
81public:
82 using value_type = T;
83 using ValueType = T;
84 static const int size = 4;
85
86 /// Trivial constructor, the quaternion is NOT initialized
87 /// @note destructor, copy constructor, assignment operator and
88 /// move constructor are left to be defined by the compiler (default)
89 Quat() = default;
90
91 /// Constructor with four arguments, e.g. Quatf q(1,2,3,4);
92 Quat(T x, T y, T z, T w)
93 {
94 mm[0] = x;
95 mm[1] = y;
96 mm[2] = z;
97 mm[3] = w;
98
99 }
100
101 /// Constructor with array argument, e.g. float a[4]; Quatf q(a);
102 Quat(T *a)
103 {
104 mm[0] = a[0];
105 mm[1] = a[1];
106 mm[2] = a[2];
107 mm[3] = a[3];
108
109 }
110
111 /// Constructor given rotation as axis and angle, the axis must be
112 /// unit vector
114 {
115 OPENVDB_ASSERT(isApproxEqual(axis.length(), T(1), T(1.0e-7)));
116
117 T s = T(sin(angle*T(0.5)));
118
119 mm[0] = axis.x() * s;
120 mm[1] = axis.y() * s;
121 mm[2] = axis.z() * s;
122
123 mm[3] = T(cos(angle*T(0.5)));
124
125 }
126
127 /// Constructor given rotation as axis and angle
129 {
130 T s = T(sin(angle*T(0.5)));
131
132 mm[0] = (axis==math::X_AXIS) * s;
133 mm[1] = (axis==math::Y_AXIS) * s;
134 mm[2] = (axis==math::Z_AXIS) * s;
135
136 mm[3] = T(cos(angle*T(0.5)));
137 }
138
139 /// Constructor given a rotation matrix without checking if the matrix is
140 /// a unitarty rotation (assumes that is it)
142 template<typename T1>
143 Quat(const Mat3<T1> &rot, UnsafeConstruct)
144 {
145 T trace(rot.trace());
146 if (trace > 0) {
147
148 T q_w = T(0.5) * std::sqrt(trace+1);
149 T factor = T(0.25) / q_w;
150
151 mm[0] = factor * (rot(1,2) - rot(2,1));
152 mm[1] = factor * (rot(2,0) - rot(0,2));
153 mm[2] = factor * (rot(0,1) - rot(1,0));
154 mm[3] = q_w;
155 } else if (rot(0,0) > rot(1,1) && rot(0,0) > rot(2,2)) {
156
157 T q_x = T(0.5) * std::sqrt(rot(0,0)- rot(1,1)-rot(2,2)+1);
158 T factor = T(0.25) / q_x;
159
160 mm[0] = q_x;
161 mm[1] = factor * (rot(0,1) + rot(1,0));
162 mm[2] = factor * (rot(2,0) + rot(0,2));
163 mm[3] = factor * (rot(1,2) - rot(2,1));
164 } else if (rot(1,1) > rot(2,2)) {
165
166 T q_y = T(0.5) * std::sqrt(rot(1,1)-rot(0,0)-rot(2,2)+1);
167 T factor = T(0.25) / q_y;
168
169 mm[0] = factor * (rot(0,1) + rot(1,0));
170 mm[1] = q_y;
171 mm[2] = factor * (rot(1,2) + rot(2,1));
172 mm[3] = factor * (rot(2,0) - rot(0,2));
173 } else {
174
175 T q_z = T(0.5) * std::sqrt(rot(2,2)-rot(0,0)-rot(1,1)+1);
176 T factor = T(0.25) / q_z;
177
178 mm[0] = factor * (rot(2,0) + rot(0,2));
179 mm[1] = factor * (rot(1,2) + rot(2,1));
180 mm[2] = q_z;
181 mm[3] = factor * (rot(0,1) - rot(1,0));
182 }
183 }
184
185 /// Constructor given a rotation matrix
186 template<typename T1>
187 Quat(const Mat3<T1> &rot)
188 : Quat([&](){
189 // verify that the matrix is really a rotation
190 if(!isUnitary(rot)) { // unitary is reflection or rotation
192 "A non-rotation matrix can not be used to construct a quaternion");
193 }
194 if (!isApproxEqual(rot.det(), T1(1))) { // rule out reflection
196 "A reflection matrix can not be used to construct a quaternion");
197 }
198 return rot;
199 }(), UnsafeConstruct{})
200 {
201 }
202
203 /// Reference to the component, e.g. q.x() = 4.5f;
204 T& x() { return mm[0]; }
205 T& y() { return mm[1]; }
206 T& z() { return mm[2]; }
207 T& w() { return mm[3]; }
208
209 /// Get the component, e.g. float f = q.w();
210 T x() const { return mm[0]; }
211 T y() const { return mm[1]; }
212 T z() const { return mm[2]; }
213 T w() const { return mm[3]; }
214
215 // Number of elements
216 static unsigned numElements() { return 4; }
217
218 /// Array style reference to the components, e.g. q[3] = 1.34f;
219 T& operator[](int i) { return mm[i]; }
220
221 /// Array style constant reference to the components, e.g. float f = q[1];
222 T operator[](int i) const { return mm[i]; }
223
224 /// Cast to T*
225 operator T*() { return mm; }
226 operator const T*() const { return mm; }
227
228 /// Alternative indexed reference to the elements
229 T& operator()(int i) { return mm[i]; }
230
231 /// Alternative indexed constant reference to the elements,
232 T operator()(int i) const { return mm[i]; }
233
234 /// Return angle of rotation
235 T angle() const
236 {
237 T sqrLength = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2];
238
239 if ( sqrLength > 1.0e-8 ) {
240
241 return T(T(2.0) * acos(mm[3]));
242
243 } else {
244
245 return T(0.0);
246 }
247 }
248
249 /// Return axis of rotation
250 Vec3<T> axis() const
251 {
252 T sqrLength = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2];
253
254 if ( sqrLength > 1.0e-8 ) {
255
256 T invLength = T(T(1)/sqrt(sqrLength));
257
258 return Vec3<T>( mm[0]*invLength, mm[1]*invLength, mm[2]*invLength );
259 } else {
260
261 return Vec3<T>(1,0,0);
262 }
263 }
264
265
266 /// "this" quaternion gets initialized to [x, y, z, w]
267 Quat& init(T x, T y, T z, T w)
268 {
269 mm[0] = x; mm[1] = y; mm[2] = z; mm[3] = w;
270 return *this;
271 }
272
273 /// "this" quaternion gets initialized to identity, same as setIdentity()
274 Quat& init() { return setIdentity(); }
275
276 /// Set "this" quaternion to rotation specified by axis and angle,
277 /// the axis must be unit vector
279 {
280
281 T s = T(sin(angle*T(0.5)));
282
283 mm[0] = axis.x() * s;
284 mm[1] = axis.y() * s;
285 mm[2] = axis.z() * s;
286
287 mm[3] = T(cos(angle*T(0.5)));
288
289 return *this;
290 } // axisAngleTest
291
292 /// Set "this" vector to zero
294 {
295 mm[0] = mm[1] = mm[2] = mm[3] = 0;
296 return *this;
297 }
298
299 /// Set "this" vector to identity
301 {
302 mm[0] = mm[1] = mm[2] = 0;
303 mm[3] = 1;
304 return *this;
305 }
306
307 /// Returns vector of x,y,z rotational components
308 Vec3<T> eulerAngles(RotationOrder rotationOrder) const
309 { return math::eulerAngles(Mat3<T>(*this), rotationOrder); }
310
311 /// Equality operator, does exact floating point comparisons
312 bool operator==(const Quat &q) const
313 {
314 return (isExactlyEqual(mm[0],q.mm[0]) &&
315 isExactlyEqual(mm[1],q.mm[1]) &&
316 isExactlyEqual(mm[2],q.mm[2]) &&
317 isExactlyEqual(mm[3],q.mm[3]) );
318 }
319
320 /// Test if "this" is equivalent to q with tolerance of eps value
321 bool eq(const Quat &q, T eps=1.0e-7) const
322 {
323 return isApproxEqual(mm[0],q.mm[0],eps) && isApproxEqual(mm[1],q.mm[1],eps) &&
324 isApproxEqual(mm[2],q.mm[2],eps) && isApproxEqual(mm[3],q.mm[3],eps) ;
325 } // trivial
326
327 /// Add quaternion q to "this" quaternion, e.g. q += q1;
329 {
330 mm[0] += q.mm[0];
331 mm[1] += q.mm[1];
332 mm[2] += q.mm[2];
333 mm[3] += q.mm[3];
334
335 return *this;
336 }
337
338 /// Subtract quaternion q from "this" quaternion, e.g. q -= q1;
340 {
341 mm[0] -= q.mm[0];
342 mm[1] -= q.mm[1];
343 mm[2] -= q.mm[2];
344 mm[3] -= q.mm[3];
345
346 return *this;
347 }
348
349 /// Scale "this" quaternion by scalar, e.g. q *= scalar;
350 Quat& operator*=(T scalar)
351 {
352 mm[0] *= scalar;
353 mm[1] *= scalar;
354 mm[2] *= scalar;
355 mm[3] *= scalar;
356
357 return *this;
358 }
359
360 /// Return (this+q), e.g. q = q1 + q2;
361 Quat operator+(const Quat &q) const
362 {
363 return Quat<T>(mm[0]+q.mm[0], mm[1]+q.mm[1], mm[2]+q.mm[2], mm[3]+q.mm[3]);
364 }
365
366 /// Return (this-q), e.g. q = q1 - q2;
367 Quat operator-(const Quat &q) const
368 {
369 return Quat<T>(mm[0]-q.mm[0], mm[1]-q.mm[1], mm[2]-q.mm[2], mm[3]-q.mm[3]);
370 }
371
372 /// Return (this*q), e.g. q = q1 * q2;
373 Quat operator*(const Quat &q) const
374 {
375 Quat<T> prod;
376
377 prod.mm[0] = mm[3]*q.mm[0] + mm[0]*q.mm[3] + mm[1]*q.mm[2] - mm[2]*q.mm[1];
378 prod.mm[1] = mm[3]*q.mm[1] + mm[1]*q.mm[3] + mm[2]*q.mm[0] - mm[0]*q.mm[2];
379 prod.mm[2] = mm[3]*q.mm[2] + mm[2]*q.mm[3] + mm[0]*q.mm[1] - mm[1]*q.mm[0];
380 prod.mm[3] = mm[3]*q.mm[3] - mm[0]*q.mm[0] - mm[1]*q.mm[1] - mm[2]*q.mm[2];
381
382 return prod;
383
384 }
385
386 /// Assigns this to (this*q), e.g. q *= q1;
388 {
389 *this = *this * q;
390 return *this;
391 }
392
393 /// Return (this*scalar), e.g. q = q1 * scalar;
394 Quat operator*(T scalar) const
395 {
396 return Quat<T>(mm[0]*scalar, mm[1]*scalar, mm[2]*scalar, mm[3]*scalar);
397 }
398
399 /// Return (this/scalar), e.g. q = q1 / scalar;
400 Quat operator/(T scalar) const
401 {
402 return Quat<T>(mm[0]/scalar, mm[1]/scalar, mm[2]/scalar, mm[3]/scalar);
403 }
404
405 /// Negation operator, e.g. q = -q;
407 { return Quat<T>(-mm[0], -mm[1], -mm[2], -mm[3]); }
408
409 /// this = q1 + q2
410 /// "this", q1 and q2 need not be distinct objects, e.g. q.add(q1,q);
411 Quat& add(const Quat &q1, const Quat &q2)
412 {
413 mm[0] = q1.mm[0] + q2.mm[0];
414 mm[1] = q1.mm[1] + q2.mm[1];
415 mm[2] = q1.mm[2] + q2.mm[2];
416 mm[3] = q1.mm[3] + q2.mm[3];
417
418 return *this;
419 }
420
421 /// this = q1 - q2
422 /// "this", q1 and q2 need not be distinct objects, e.g. q.sub(q1,q);
423 Quat& sub(const Quat &q1, const Quat &q2)
424 {
425 mm[0] = q1.mm[0] - q2.mm[0];
426 mm[1] = q1.mm[1] - q2.mm[1];
427 mm[2] = q1.mm[2] - q2.mm[2];
428 mm[3] = q1.mm[3] - q2.mm[3];
429
430 return *this;
431 }
432
433 /// this = q1 * q2
434 /// q1 and q2 must be distinct objects than "this", e.g. q.mult(q1,q2);
435 Quat& mult(const Quat &q1, const Quat &q2)
436 {
437 mm[0] = q1.mm[3]*q2.mm[0] + q1.mm[0]*q2.mm[3] +
438 q1.mm[1]*q2.mm[2] - q1.mm[2]*q2.mm[1];
439 mm[1] = q1.mm[3]*q2.mm[1] + q1.mm[1]*q2.mm[3] +
440 q1.mm[2]*q2.mm[0] - q1.mm[0]*q2.mm[2];
441 mm[2] = q1.mm[3]*q2.mm[2] + q1.mm[2]*q2.mm[3] +
442 q1.mm[0]*q2.mm[1] - q1.mm[1]*q2.mm[0];
443 mm[3] = q1.mm[3]*q2.mm[3] - q1.mm[0]*q2.mm[0] -
444 q1.mm[1]*q2.mm[1] - q1.mm[2]*q2.mm[2];
445
446 return *this;
447 }
448
449 /// this = scalar*q, q need not be distinct object than "this",
450 /// e.g. q.scale(1.5,q1);
451 Quat& scale(T scale, const Quat &q)
452 {
453 mm[0] = scale * q.mm[0];
454 mm[1] = scale * q.mm[1];
455 mm[2] = scale * q.mm[2];
456 mm[3] = scale * q.mm[3];
457
458 return *this;
459 }
460
461 /// Dot product
462 T dot(const Quat &q) const
463 {
464 return (mm[0]*q.mm[0] + mm[1]*q.mm[1] + mm[2]*q.mm[2] + mm[3]*q.mm[3]);
465 }
466
467 /// Return the quaternion rate corrsponding to the angular velocity omega
468 /// and "this" current rotation
469 Quat derivative(const Vec3<T>& omega) const
470 {
471 return Quat<T>( +w()*omega.x() -z()*omega.y() +y()*omega.z() ,
472 +z()*omega.x() +w()*omega.y() -x()*omega.z() ,
473 -y()*omega.x() +x()*omega.y() +w()*omega.z() ,
474 -x()*omega.x() -y()*omega.y() -z()*omega.z() );
475 }
476
477 /// this = normalized this
478 bool normalize(T eps = T(1.0e-8))
479 {
480 T d = T(sqrt(mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3]));
481 if( isApproxEqual(d, T(0.0), eps) ) return false;
482 *this *= ( T(1)/d );
483 return true;
484 }
485
486 /// this = normalized this
487 Quat unit() const
488 {
489 T d = sqrt(mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3]);
490 if( isExactlyEqual(d , T(0.0) ) )
492 "Normalizing degenerate quaternion");
493 return *this / d;
494 }
495
496 /// returns inverse of this
497 Quat inverse(T tolerance = T(0)) const
498 {
499 T d = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3];
500 if( isApproxEqual(d, T(0.0), tolerance) )
502 "Cannot invert degenerate quaternion");
503 Quat result = *this/-d;
504 result.mm[3] = -result.mm[3];
505 return result;
506 }
507
508
509 /// Return the conjugate of "this", same as invert without
510 /// unit quaternion test
512 {
513 return Quat<T>(-mm[0], -mm[1], -mm[2], mm[3]);
514 }
515
516 /// Return rotated vector by "this" quaternion
518 {
519 Mat3<T> m(*this);
520 return m.transform(v);
521 }
522
523 /// Predefined constants, e.g. Quat q = Quat::identity();
524 static Quat zero() { return Quat<T>(0,0,0,0); }
525 static Quat identity() { return Quat<T>(0,0,0,1); }
526
527 /// @return string representation of Classname
528 std::string str() const
529 {
530 std::ostringstream buffer;
531
532 buffer << "[";
533
534 // For each column
535 for (unsigned j(0); j < 4; j++) {
536 if (j) buffer << ", ";
537 buffer << mm[j];
538 }
539
540 buffer << "]";
541
542 return buffer.str();
543 }
544
545 /// Output to the stream, e.g. std::cout << q << std::endl;
546 friend std::ostream& operator<<(std::ostream &stream, const Quat &q)
547 {
548 stream << q.str();
549 return stream;
550 }
551
552 friend Quat slerp<>(const Quat &q1, const Quat &q2, T t, T tolerance);
553
554 void write(std::ostream& os) const { os.write(static_cast<char*>(&mm), sizeof(T) * 4); }
555 void read(std::istream& is) { is.read(static_cast<char*>(&mm), sizeof(T) * 4); }
556
557protected:
558 T mm[4];
559};
560
561/// Multiply each element of the given quaternion by @a scalar and return the result.
562template <typename S, typename T>
563Quat<T> operator*(S scalar, const Quat<T> &q) { return q*scalar; }
564
565
566/// @brief Interpolate between m1 and m2.
567/// Converts to quaternion form and uses slerp
568/// m1 and m2 must be rotation matrices!
569template <typename T, typename T0>
570Mat3<T> slerp(const Mat3<T0> &m1, const Mat3<T0> &m2, T t)
571{
572 using MatType = Mat3<T>;
573
574 Quat<T> q1(m1);
575 Quat<T> q2(m2);
576
577 if (q1.dot(q2) < 0) q2 *= -1;
578
579 Quat<T> qslerp = slerp<T>(q1, q2, static_cast<T>(t));
580 MatType m = rotation<MatType>(qslerp);
581 return m;
582}
583
584
585
586/// Interpolate between m1 and m4 by converting m1 ... m4 into
587/// quaternions and treating them as control points of a Bezier
588/// curve using slerp in place of lerp in the De Castlejeau evaluation
589/// algorithm. Just like a cubic Bezier curve, this will interpolate
590/// m1 at t = 0 and m4 at t = 1 but in general will not pass through
591/// m2 and m3. Unlike a standard Bezier curve this curve will not have
592/// the convex hull property.
593/// m1 ... m4 must be rotation matrices!
594template <typename T, typename T0>
595Mat3<T> bezLerp(const Mat3<T0> &m1, const Mat3<T0> &m2,
596 const Mat3<T0> &m3, const Mat3<T0> &m4,
597 T t)
598{
599 Mat3<T> m00, m01, m02, m10, m11;
600
601 m00 = slerp(m1, m2, t);
602 m01 = slerp(m2, m3, t);
603 m02 = slerp(m3, m4, t);
604
605 m10 = slerp(m00, m01, t);
606 m11 = slerp(m01, m02, t);
607
608 return slerp(m10, m11, t);
609}
610
613
616
617} // namespace math
618
619
620template<> inline math::Quats zeroVal<math::Quats >() { return math::Quats::zero(); }
621template<> inline math::Quatd zeroVal<math::Quatd >() { return math::Quatd::zero(); }
622
623} // namespace OPENVDB_VERSION_NAME
624} // namespace openvdb
625
626#endif //OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
#define OPENVDB_ASSERT(X)
Definition Assert.h:41
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
#define OPENVDB_IS_POD(Type)
Definition Math.h:57
Definition Exceptions.h:56
3x3 matrix class.
Definition Mat3.h:29
T trace() const
Trace of matrix.
Definition Mat3.h:488
T det() const
Determinant of matrix.
Definition Mat3.h:479
Vec3< T0 > transform(const Vec3< T0 > &v) const
Definition Mat3.h:505
Definition Quat.h:80
Quat(const Mat3< T1 > &rot, UnsafeConstruct)
Definition Quat.h:143
Real angle() const
Definition Quat.h:235
Real & x()
Definition Quat.h:204
Quat & sub(const Quat &q1, const Quat &q2)
Definition Quat.h:423
Quat conjugate() const
Definition Quat.h:511
Vec3< Real > axis() const
Definition Quat.h:250
Quat operator/(T scalar) const
Return (this/scalar), e.g. q = q1 / scalar;.
Definition Quat.h:400
Quat & operator*=(T scalar)
Scale "this" quaternion by scalar, e.g. q *= scalar;.
Definition Quat.h:350
Quat & setAxisAngle(const Vec3< T > &axis, T angle)
Definition Quat.h:278
Quat unit() const
this = normalized this
Definition Quat.h:487
void write(std::ostream &os) const
Definition Quat.h:554
Quat operator*(const Quat &q) const
Return (this*q), e.g. q = q1 * q2;.
Definition Quat.h:373
bool operator==(const Quat &q) const
Equality operator, does exact floating point comparisons.
Definition Quat.h:312
Quat(T *a)
Constructor with array argument, e.g. float a[4]; Quatf q(a);.
Definition Quat.h:102
Quat & add(const Quat &q1, const Quat &q2)
Definition Quat.h:411
friend std::ostream & operator<<(std::ostream &stream, const Quat &q)
Output to the stream, e.g. std::cout << q << std::endl;.
Definition Quat.h:546
T w() const
Definition Quat.h:213
Quat(math::Axis axis, T angle)
Constructor given rotation as axis and angle.
Definition Quat.h:128
Quat & operator+=(const Quat &q)
Add quaternion q to "this" quaternion, e.g. q += q1;.
Definition Quat.h:328
Quat operator-() const
Negation operator, e.g. q = -q;.
Definition Quat.h:406
T & operator()(int i)
Alternative indexed reference to the elements.
Definition Quat.h:229
Real & y()
Definition Quat.h:205
Real & z()
Definition Quat.h:206
Quat(const Vec3< T > &axis, T angle)
Definition Quat.h:113
Quat & scale(T scale, const Quat &q)
Definition Quat.h:451
T operator()(int i) const
Alternative indexed constant reference to the elements,.
Definition Quat.h:232
Quat(const Mat3< T1 > &rot)
Constructor given a rotation matrix.
Definition Quat.h:187
Quat & setIdentity()
Definition Quat.h:300
Quat operator+(const Quat &q) const
Return (this+q), e.g. q = q1 + q2;.
Definition Quat.h:361
Quat & init()
"this" quaternion gets initialized to identity, same as setIdentity()
Definition Quat.h:274
Quat operator*=(const Quat &q)
Assigns this to (this*q), e.g. q *= q1;.
Definition Quat.h:387
Quat(T x, T y, T z, T w)
Constructor with four arguments, e.g. Quatf q(1,2,3,4);.
Definition Quat.h:92
Vec3< T > rotateVector(const Vec3< T > &v) const
Return rotated vector by "this" quaternion.
Definition Quat.h:517
T x() const
Get the component, e.g. float f = q.w();.
Definition Quat.h:210
static const int size
Definition Quat.h:84
bool normalize(T eps=T(1.0e-8))
this = normalized this
Definition Quat.h:478
static Quat identity()
Definition Quat.h:525
Quat & init(T x, T y, T z, T w)
"this" quaternion gets initialized to [x, y, z, w]
Definition Quat.h:267
T z() const
Definition Quat.h:212
T y() const
Definition Quat.h:211
Vec3< T > eulerAngles(RotationOrder rotationOrder) const
Returns vector of x,y,z rotational components.
Definition Quat.h:308
T operator[](int i) const
Array style constant reference to the components, e.g. float f = q[1];.
Definition Quat.h:222
static unsigned numElements()
Definition Quat.h:216
Quat derivative(const Vec3< T > &omega) const
Definition Quat.h:469
T & operator[](int i)
Array style reference to the components, e.g. q[3] = 1.34f;.
Definition Quat.h:219
Quat operator*(T scalar) const
Return (this*scalar), e.g. q = q1 * scalar;.
Definition Quat.h:394
Real mm[4]
Definition Quat.h:558
std::string str() const
Definition Quat.h:528
friend Quat slerp(const Quat &q1, const Quat &q2, Real t, Real tolerance)
Quat & operator-=(const Quat &q)
Subtract quaternion q from "this" quaternion, e.g. q -= q1;.
Definition Quat.h:339
Real ValueType
Definition Quat.h:83
Quat & mult(const Quat &q1, const Quat &q2)
Definition Quat.h:435
static Quat zero()
Predefined constants, e.g. Quat q = Quat::identity();.
Definition Quat.h:524
Quat inverse(T tolerance=T(0)) const
returns inverse of this
Definition Quat.h:497
bool eq(const Quat &q, T eps=1.0e-7) const
Test if "this" is equivalent to q with tolerance of eps value.
Definition Quat.h:321
Quat & setZero()
Set "this" vector to zero.
Definition Quat.h:293
Quat operator-(const Quat &q) const
Return (this-q), e.g. q = q1 - q2;.
Definition Quat.h:367
Real value_type
Definition Quat.h:82
Real & w()
Definition Quat.h:207
void read(std::istream &is)
Definition Quat.h:555
T dot(const Quat &q) const
Dot product.
Definition Quat.h:462
Definition Vec3.h:25
T & x()
Reference to the component, e.g. v.x() = 4.5f;.
Definition Vec3.h:86
T & y()
Definition Vec3.h:87
T & z()
Definition Vec3.h:88
Mat3< typename promote< T0, T1 >::type > operator*(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Multiply m0 by m1 and return the resulting matrix.
Definition Mat3.h:597
Vec3< typename MatType::value_type > eulerAngles(const MatType &mat, RotationOrder rotationOrder, typename MatType::value_type eps=static_cast< typename MatType::value_type >(1.0e-8))
Return the Euler angles composing the given rotation matrix.
Definition Mat.h:333
bool isApproxEqual(const Type &a, const Type &b, const Type &tolerance)
Return true if a is equal to b to within the given tolerance.
Definition Math.h:431
bool isUnitary(const MatType &m)
Determine if a matrix is unitary (i.e., rotation or reflection).
Definition Mat.h:889
MatType rotation(const Quat< typename MatType::value_type > &q, typename MatType::value_type eps=static_cast< typename MatType::value_type >(1.0e-8))
Return the rotation matrix specified by the given quaternion.
Definition Mat.h:172
T angle(const Vec2< T > &v1, const Vec2< T > &v2)
Definition Vec2.h:446
bool isExactlyEqual(const T0 &a, const T1 &b)
Return true if a is exactly equal to b.
Definition Math.h:468
Quat< double > Quatd
Definition Quat.h:612
Axis
Definition Math.h:972
@ Z_AXIS
Definition Math.h:975
@ X_AXIS
Definition Math.h:973
@ Y_AXIS
Definition Math.h:974
Quat< float > Quats
Definition Quat.h:611
Mat3< T > bezLerp(const Mat3< T0 > &m1, const Mat3< T0 > &m2, const Mat3< T0 > &m3, const Mat3< T0 > &m4, T t)
Definition Quat.h:595
RotationOrder
Definition Math.h:979
Quat< T > slerp(const Quat< T > &q1, const Quat< T > &q2, T t, T tolerance=0.00001)
Linear interpolation between the two quaternions.
Definition Quat.h:28
constexpr T zeroVal()
Return the value of type T that corresponds to zero.
Definition Math.h:71
Definition Exceptions.h:13
#define OPENVDB_THROW(exception, message)
Definition Exceptions.h:74
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition version.h.in:121
#define OPENVDB_USE_VERSION_NAMESPACE
Definition version.h.in:218