|
OpenVDB
13.0.0
|
Classes | |
| struct | AttrIndices |
| struct | CovarianceTransfer |
| struct | NoTimer |
| struct | PcaTimer |
| struct | PcaTransfer |
| struct | WeightPosSumsTransfer |
Typedefs | |
| using | TimerT = NoTimer |
| using | WeightSumT = double |
| using | WeightedPositionSumT = Vec3d |
| using | GroupIndexT = points::AttributeSet::Descriptor::GroupIndex |
Functions | |
| template<typename T , typename LeafNodeT > | |
| T * | initPcaArrayAttribute (LeafNodeT &leaf, const size_t idx, const bool fill=true) |
| template<typename Scalar > | |
| Vec3i | descendingOrder (math::Vec3< Scalar > &vector) |
| Sort a vector into descending order and output a vector of the resulting order. More... | |
| template<typename Scalar > | |
| bool | decomposeSymmetricMatrix (const math::Mat3< Scalar > &mat, math::Mat3< Scalar > &U, math::Vec3< Scalar > &sigma) |
| Decomposes a symmetric matrix into its eigenvalues and a rotation matrix of eigenvectors. Note that if mat is positive-definite, this will be equivalent to a singular value decomposition where V = U. More... | |
| using GroupIndexT = points::AttributeSet::Descriptor::GroupIndex |
| using WeightedPositionSumT = Vec3d |
| using WeightSumT = double |
|
inline |
Decomposes a symmetric matrix into its eigenvalues and a rotation matrix of eigenvectors. Note that if mat is positive-definite, this will be equivalent to a singular value decomposition where V = U.
| mat | Matrix to decompose |
| U | rotation matrix. The order of its columns (which will be eigenvectors) will match the eigenvalues in sigma |
| sigma | vector of eigenvalues |
|
inline |
Sort a vector into descending order and output a vector of the resulting order.
| vector | Vector to sort |
|
inline |
1.8.11